MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rprege0 Structured version   Visualization version   GIF version

Theorem rprege0 11791
Description: A positive real is a nonnegative real number. (Contributed by Mario Carneiro, 31-Jan-2014.)
Assertion
Ref Expression
rprege0 (𝐴 ∈ ℝ+ → (𝐴 ∈ ℝ ∧ 0 ≤ 𝐴))

Proof of Theorem rprege0
StepHypRef Expression
1 rpre 11783 . 2 (𝐴 ∈ ℝ+𝐴 ∈ ℝ)
2 rpge0 11789 . 2 (𝐴 ∈ ℝ+ → 0 ≤ 𝐴)
31, 2jca 554 1 (𝐴 ∈ ℝ+ → (𝐴 ∈ ℝ ∧ 0 ≤ 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384  wcel 1987   class class class wbr 4613  cr 9879  0cc0 9880  cle 10019  +crp 11776
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-sep 4741  ax-nul 4749  ax-pow 4803  ax-pr 4867  ax-un 6902  ax-resscn 9937  ax-1cn 9938  ax-icn 9939  ax-addcl 9940  ax-addrcl 9941  ax-mulcl 9942  ax-mulrcl 9943  ax-i2m1 9948  ax-1ne0 9949  ax-rnegex 9951  ax-rrecex 9952  ax-cnre 9953  ax-pre-lttri 9954
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-rab 2916  df-v 3188  df-sbc 3418  df-csb 3515  df-dif 3558  df-un 3560  df-in 3562  df-ss 3569  df-nul 3892  df-if 4059  df-pw 4132  df-sn 4149  df-pr 4151  df-op 4155  df-uni 4403  df-br 4614  df-opab 4674  df-mpt 4675  df-id 4989  df-xp 5080  df-rel 5081  df-cnv 5082  df-co 5083  df-dm 5084  df-rn 5085  df-res 5086  df-ima 5087  df-iota 5810  df-fun 5849  df-fn 5850  df-f 5851  df-f1 5852  df-fo 5853  df-f1o 5854  df-fv 5855  df-ov 6607  df-er 7687  df-en 7900  df-dom 7901  df-sdom 7902  df-pnf 10020  df-mnf 10021  df-xr 10022  df-ltxr 10023  df-le 10024  df-rp 11777
This theorem is referenced by:  resqrex  13925  sqrtdiv  13940  o1fsum  14472  prmreclem3  15546  aaliou3lem3  24003  pige3  24173  rpcxpcl  24322  cxprec  24332  harmoniclbnd  24635  harmonicbnd4  24637  basellem4  24710  logfaclbnd  24847  logfacrlim  24849  logexprlim  24850  bposlem7  24915  vmadivsum  25071  dchrisum0lem2a  25106  dchrisum0lem2  25107  dchrisum0  25109  mudivsum  25119  mulogsumlem  25120  selberglem2  25135  selberg2lem  25139  pntrsumo1  25154  minvecolem3  27581
  Copyright terms: Public domain W3C validator