![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > rpvmasum | Structured version Visualization version GIF version |
Description: The sum of the von Mangoldt function over those integers 𝑛≡𝐴 (mod 𝑁) is asymptotic to log𝑥 / ϕ(𝑥) + 𝑂(1). Equation 9.4.3 of [Shapiro], p. 375. (Contributed by Mario Carneiro, 2-May-2016.) (Proof shortened by Mario Carneiro, 26-May-2016.) |
Ref | Expression |
---|---|
rpvmasum.z | ⊢ 𝑍 = (ℤ/nℤ‘𝑁) |
rpvmasum.l | ⊢ 𝐿 = (ℤRHom‘𝑍) |
rpvmasum.a | ⊢ (𝜑 → 𝑁 ∈ ℕ) |
rpvmasum.u | ⊢ 𝑈 = (Unit‘𝑍) |
rpvmasum.b | ⊢ (𝜑 → 𝐴 ∈ 𝑈) |
rpvmasum.t | ⊢ 𝑇 = (◡𝐿 “ {𝐴}) |
Ref | Expression |
---|---|
rpvmasum | ⊢ (𝜑 → (𝑥 ∈ ℝ+ ↦ (((ϕ‘𝑁) · Σ𝑛 ∈ ((1...(⌊‘𝑥)) ∩ 𝑇)((Λ‘𝑛) / 𝑛)) − (log‘𝑥))) ∈ 𝑂(1)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rpvmasum.z | . . . . . . . . . . . . . 14 ⊢ 𝑍 = (ℤ/nℤ‘𝑁) | |
2 | rpvmasum.l | . . . . . . . . . . . . . 14 ⊢ 𝐿 = (ℤRHom‘𝑍) | |
3 | rpvmasum.a | . . . . . . . . . . . . . . 15 ⊢ (𝜑 → 𝑁 ∈ ℕ) | |
4 | 3 | adantr 480 | . . . . . . . . . . . . . 14 ⊢ ((𝜑 ∧ 𝑓 ∈ {𝑦 ∈ ((Base‘(DChr‘𝑁)) ∖ {(0g‘(DChr‘𝑁))}) ∣ Σ𝑚 ∈ ℕ ((𝑦‘(𝐿‘𝑚)) / 𝑚) = 0}) → 𝑁 ∈ ℕ) |
5 | eqid 2651 | . . . . . . . . . . . . . 14 ⊢ (DChr‘𝑁) = (DChr‘𝑁) | |
6 | eqid 2651 | . . . . . . . . . . . . . 14 ⊢ (Base‘(DChr‘𝑁)) = (Base‘(DChr‘𝑁)) | |
7 | eqid 2651 | . . . . . . . . . . . . . 14 ⊢ (0g‘(DChr‘𝑁)) = (0g‘(DChr‘𝑁)) | |
8 | fveq2 6229 | . . . . . . . . . . . . . . . . . . 19 ⊢ (𝑚 = 𝑛 → (𝐿‘𝑚) = (𝐿‘𝑛)) | |
9 | 8 | fveq2d 6233 | . . . . . . . . . . . . . . . . . 18 ⊢ (𝑚 = 𝑛 → (𝑦‘(𝐿‘𝑚)) = (𝑦‘(𝐿‘𝑛))) |
10 | id 22 | . . . . . . . . . . . . . . . . . 18 ⊢ (𝑚 = 𝑛 → 𝑚 = 𝑛) | |
11 | 9, 10 | oveq12d 6708 | . . . . . . . . . . . . . . . . 17 ⊢ (𝑚 = 𝑛 → ((𝑦‘(𝐿‘𝑚)) / 𝑚) = ((𝑦‘(𝐿‘𝑛)) / 𝑛)) |
12 | 11 | cbvsumv 14470 | . . . . . . . . . . . . . . . 16 ⊢ Σ𝑚 ∈ ℕ ((𝑦‘(𝐿‘𝑚)) / 𝑚) = Σ𝑛 ∈ ℕ ((𝑦‘(𝐿‘𝑛)) / 𝑛) |
13 | 12 | eqeq1i 2656 | . . . . . . . . . . . . . . 15 ⊢ (Σ𝑚 ∈ ℕ ((𝑦‘(𝐿‘𝑚)) / 𝑚) = 0 ↔ Σ𝑛 ∈ ℕ ((𝑦‘(𝐿‘𝑛)) / 𝑛) = 0) |
14 | 13 | rabbii 3216 | . . . . . . . . . . . . . 14 ⊢ {𝑦 ∈ ((Base‘(DChr‘𝑁)) ∖ {(0g‘(DChr‘𝑁))}) ∣ Σ𝑚 ∈ ℕ ((𝑦‘(𝐿‘𝑚)) / 𝑚) = 0} = {𝑦 ∈ ((Base‘(DChr‘𝑁)) ∖ {(0g‘(DChr‘𝑁))}) ∣ Σ𝑛 ∈ ℕ ((𝑦‘(𝐿‘𝑛)) / 𝑛) = 0} |
15 | simpr 476 | . . . . . . . . . . . . . 14 ⊢ ((𝜑 ∧ 𝑓 ∈ {𝑦 ∈ ((Base‘(DChr‘𝑁)) ∖ {(0g‘(DChr‘𝑁))}) ∣ Σ𝑚 ∈ ℕ ((𝑦‘(𝐿‘𝑚)) / 𝑚) = 0}) → 𝑓 ∈ {𝑦 ∈ ((Base‘(DChr‘𝑁)) ∖ {(0g‘(DChr‘𝑁))}) ∣ Σ𝑚 ∈ ℕ ((𝑦‘(𝐿‘𝑚)) / 𝑚) = 0}) | |
16 | 1, 2, 4, 5, 6, 7, 14, 15 | dchrisum0 25254 | . . . . . . . . . . . . 13 ⊢ ¬ (𝜑 ∧ 𝑓 ∈ {𝑦 ∈ ((Base‘(DChr‘𝑁)) ∖ {(0g‘(DChr‘𝑁))}) ∣ Σ𝑚 ∈ ℕ ((𝑦‘(𝐿‘𝑚)) / 𝑚) = 0}) |
17 | 16 | imnani 438 | . . . . . . . . . . . 12 ⊢ (𝜑 → ¬ 𝑓 ∈ {𝑦 ∈ ((Base‘(DChr‘𝑁)) ∖ {(0g‘(DChr‘𝑁))}) ∣ Σ𝑚 ∈ ℕ ((𝑦‘(𝐿‘𝑚)) / 𝑚) = 0}) |
18 | 17 | eq0rdv 4012 | . . . . . . . . . . 11 ⊢ (𝜑 → {𝑦 ∈ ((Base‘(DChr‘𝑁)) ∖ {(0g‘(DChr‘𝑁))}) ∣ Σ𝑚 ∈ ℕ ((𝑦‘(𝐿‘𝑚)) / 𝑚) = 0} = ∅) |
19 | 18 | fveq2d 6233 | . . . . . . . . . 10 ⊢ (𝜑 → (#‘{𝑦 ∈ ((Base‘(DChr‘𝑁)) ∖ {(0g‘(DChr‘𝑁))}) ∣ Σ𝑚 ∈ ℕ ((𝑦‘(𝐿‘𝑚)) / 𝑚) = 0}) = (#‘∅)) |
20 | hash0 13196 | . . . . . . . . . 10 ⊢ (#‘∅) = 0 | |
21 | 19, 20 | syl6eq 2701 | . . . . . . . . 9 ⊢ (𝜑 → (#‘{𝑦 ∈ ((Base‘(DChr‘𝑁)) ∖ {(0g‘(DChr‘𝑁))}) ∣ Σ𝑚 ∈ ℕ ((𝑦‘(𝐿‘𝑚)) / 𝑚) = 0}) = 0) |
22 | 21 | oveq2d 6706 | . . . . . . . 8 ⊢ (𝜑 → (1 − (#‘{𝑦 ∈ ((Base‘(DChr‘𝑁)) ∖ {(0g‘(DChr‘𝑁))}) ∣ Σ𝑚 ∈ ℕ ((𝑦‘(𝐿‘𝑚)) / 𝑚) = 0})) = (1 − 0)) |
23 | 1m0e1 11169 | . . . . . . . 8 ⊢ (1 − 0) = 1 | |
24 | 22, 23 | syl6eq 2701 | . . . . . . 7 ⊢ (𝜑 → (1 − (#‘{𝑦 ∈ ((Base‘(DChr‘𝑁)) ∖ {(0g‘(DChr‘𝑁))}) ∣ Σ𝑚 ∈ ℕ ((𝑦‘(𝐿‘𝑚)) / 𝑚) = 0})) = 1) |
25 | 24 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) → (1 − (#‘{𝑦 ∈ ((Base‘(DChr‘𝑁)) ∖ {(0g‘(DChr‘𝑁))}) ∣ Σ𝑚 ∈ ℕ ((𝑦‘(𝐿‘𝑚)) / 𝑚) = 0})) = 1) |
26 | 25 | oveq2d 6706 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) → ((log‘𝑥) · (1 − (#‘{𝑦 ∈ ((Base‘(DChr‘𝑁)) ∖ {(0g‘(DChr‘𝑁))}) ∣ Σ𝑚 ∈ ℕ ((𝑦‘(𝐿‘𝑚)) / 𝑚) = 0}))) = ((log‘𝑥) · 1)) |
27 | relogcl 24367 | . . . . . . . 8 ⊢ (𝑥 ∈ ℝ+ → (log‘𝑥) ∈ ℝ) | |
28 | 27 | adantl 481 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) → (log‘𝑥) ∈ ℝ) |
29 | 28 | recnd 10106 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) → (log‘𝑥) ∈ ℂ) |
30 | 29 | mulid1d 10095 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) → ((log‘𝑥) · 1) = (log‘𝑥)) |
31 | 26, 30 | eqtrd 2685 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) → ((log‘𝑥) · (1 − (#‘{𝑦 ∈ ((Base‘(DChr‘𝑁)) ∖ {(0g‘(DChr‘𝑁))}) ∣ Σ𝑚 ∈ ℕ ((𝑦‘(𝐿‘𝑚)) / 𝑚) = 0}))) = (log‘𝑥)) |
32 | 31 | oveq2d 6706 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) → (((ϕ‘𝑁) · Σ𝑛 ∈ ((1...(⌊‘𝑥)) ∩ 𝑇)((Λ‘𝑛) / 𝑛)) − ((log‘𝑥) · (1 − (#‘{𝑦 ∈ ((Base‘(DChr‘𝑁)) ∖ {(0g‘(DChr‘𝑁))}) ∣ Σ𝑚 ∈ ℕ ((𝑦‘(𝐿‘𝑚)) / 𝑚) = 0})))) = (((ϕ‘𝑁) · Σ𝑛 ∈ ((1...(⌊‘𝑥)) ∩ 𝑇)((Λ‘𝑛) / 𝑛)) − (log‘𝑥))) |
33 | 32 | mpteq2dva 4777 | . 2 ⊢ (𝜑 → (𝑥 ∈ ℝ+ ↦ (((ϕ‘𝑁) · Σ𝑛 ∈ ((1...(⌊‘𝑥)) ∩ 𝑇)((Λ‘𝑛) / 𝑛)) − ((log‘𝑥) · (1 − (#‘{𝑦 ∈ ((Base‘(DChr‘𝑁)) ∖ {(0g‘(DChr‘𝑁))}) ∣ Σ𝑚 ∈ ℕ ((𝑦‘(𝐿‘𝑚)) / 𝑚) = 0}))))) = (𝑥 ∈ ℝ+ ↦ (((ϕ‘𝑁) · Σ𝑛 ∈ ((1...(⌊‘𝑥)) ∩ 𝑇)((Λ‘𝑛) / 𝑛)) − (log‘𝑥)))) |
34 | eqid 2651 | . . 3 ⊢ {𝑦 ∈ ((Base‘(DChr‘𝑁)) ∖ {(0g‘(DChr‘𝑁))}) ∣ Σ𝑚 ∈ ℕ ((𝑦‘(𝐿‘𝑚)) / 𝑚) = 0} = {𝑦 ∈ ((Base‘(DChr‘𝑁)) ∖ {(0g‘(DChr‘𝑁))}) ∣ Σ𝑚 ∈ ℕ ((𝑦‘(𝐿‘𝑚)) / 𝑚) = 0} | |
35 | rpvmasum.u | . . 3 ⊢ 𝑈 = (Unit‘𝑍) | |
36 | rpvmasum.b | . . 3 ⊢ (𝜑 → 𝐴 ∈ 𝑈) | |
37 | rpvmasum.t | . . 3 ⊢ 𝑇 = (◡𝐿 “ {𝐴}) | |
38 | 16 | pm2.21i 116 | . . 3 ⊢ ((𝜑 ∧ 𝑓 ∈ {𝑦 ∈ ((Base‘(DChr‘𝑁)) ∖ {(0g‘(DChr‘𝑁))}) ∣ Σ𝑚 ∈ ℕ ((𝑦‘(𝐿‘𝑚)) / 𝑚) = 0}) → 𝐴 = (1r‘𝑍)) |
39 | 1, 2, 3, 5, 6, 7, 34, 35, 36, 37, 38 | rpvmasum2 25246 | . 2 ⊢ (𝜑 → (𝑥 ∈ ℝ+ ↦ (((ϕ‘𝑁) · Σ𝑛 ∈ ((1...(⌊‘𝑥)) ∩ 𝑇)((Λ‘𝑛) / 𝑛)) − ((log‘𝑥) · (1 − (#‘{𝑦 ∈ ((Base‘(DChr‘𝑁)) ∖ {(0g‘(DChr‘𝑁))}) ∣ Σ𝑚 ∈ ℕ ((𝑦‘(𝐿‘𝑚)) / 𝑚) = 0}))))) ∈ 𝑂(1)) |
40 | 33, 39 | eqeltrrd 2731 | 1 ⊢ (𝜑 → (𝑥 ∈ ℝ+ ↦ (((ϕ‘𝑁) · Σ𝑛 ∈ ((1...(⌊‘𝑥)) ∩ 𝑇)((Λ‘𝑛) / 𝑛)) − (log‘𝑥))) ∈ 𝑂(1)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 = wceq 1523 ∈ wcel 2030 {crab 2945 ∖ cdif 3604 ∩ cin 3606 ∅c0 3948 {csn 4210 ↦ cmpt 4762 ◡ccnv 5142 “ cima 5146 ‘cfv 5926 (class class class)co 6690 ℝcr 9973 0cc0 9974 1c1 9975 · cmul 9979 − cmin 10304 / cdiv 10722 ℕcn 11058 ℝ+crp 11870 ...cfz 12364 ⌊cfl 12631 #chash 13157 𝑂(1)co1 14261 Σcsu 14460 ϕcphi 15516 Basecbs 15904 0gc0g 16147 1rcur 18547 Unitcui 18685 ℤRHomczrh 19896 ℤ/nℤczn 19899 logclog 24346 Λcvma 24863 DChrcdchr 25002 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-8 2032 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 ax-rep 4804 ax-sep 4814 ax-nul 4822 ax-pow 4873 ax-pr 4936 ax-un 6991 ax-inf2 8576 ax-cnex 10030 ax-resscn 10031 ax-1cn 10032 ax-icn 10033 ax-addcl 10034 ax-addrcl 10035 ax-mulcl 10036 ax-mulrcl 10037 ax-mulcom 10038 ax-addass 10039 ax-mulass 10040 ax-distr 10041 ax-i2m1 10042 ax-1ne0 10043 ax-1rid 10044 ax-rnegex 10045 ax-rrecex 10046 ax-cnre 10047 ax-pre-lttri 10048 ax-pre-lttrn 10049 ax-pre-ltadd 10050 ax-pre-mulgt0 10051 ax-pre-sup 10052 ax-addf 10053 ax-mulf 10054 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1055 df-3an 1056 df-tru 1526 df-fal 1529 df-ex 1745 df-nf 1750 df-sb 1938 df-eu 2502 df-mo 2503 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-ne 2824 df-nel 2927 df-ral 2946 df-rex 2947 df-reu 2948 df-rmo 2949 df-rab 2950 df-v 3233 df-sbc 3469 df-csb 3567 df-dif 3610 df-un 3612 df-in 3614 df-ss 3621 df-pss 3623 df-nul 3949 df-if 4120 df-pw 4193 df-sn 4211 df-pr 4213 df-tp 4215 df-op 4217 df-uni 4469 df-int 4508 df-iun 4554 df-iin 4555 df-disj 4653 df-br 4686 df-opab 4746 df-mpt 4763 df-tr 4786 df-id 5053 df-eprel 5058 df-po 5064 df-so 5065 df-fr 5102 df-se 5103 df-we 5104 df-xp 5149 df-rel 5150 df-cnv 5151 df-co 5152 df-dm 5153 df-rn 5154 df-res 5155 df-ima 5156 df-pred 5718 df-ord 5764 df-on 5765 df-lim 5766 df-suc 5767 df-iota 5889 df-fun 5928 df-fn 5929 df-f 5930 df-f1 5931 df-fo 5932 df-f1o 5933 df-fv 5934 df-isom 5935 df-riota 6651 df-ov 6693 df-oprab 6694 df-mpt2 6695 df-of 6939 df-rpss 6979 df-om 7108 df-1st 7210 df-2nd 7211 df-supp 7341 df-tpos 7397 df-wrecs 7452 df-recs 7513 df-rdg 7551 df-1o 7605 df-2o 7606 df-oadd 7609 df-omul 7610 df-er 7787 df-ec 7789 df-qs 7793 df-map 7901 df-pm 7902 df-ixp 7951 df-en 7998 df-dom 7999 df-sdom 8000 df-fin 8001 df-fsupp 8317 df-fi 8358 df-sup 8389 df-inf 8390 df-oi 8456 df-card 8803 df-acn 8806 df-cda 9028 df-pnf 10114 df-mnf 10115 df-xr 10116 df-ltxr 10117 df-le 10118 df-sub 10306 df-neg 10307 df-div 10723 df-nn 11059 df-2 11117 df-3 11118 df-4 11119 df-5 11120 df-6 11121 df-7 11122 df-8 11123 df-9 11124 df-n0 11331 df-xnn0 11402 df-z 11416 df-dec 11532 df-uz 11726 df-q 11827 df-rp 11871 df-xneg 11984 df-xadd 11985 df-xmul 11986 df-ioo 12217 df-ioc 12218 df-ico 12219 df-icc 12220 df-fz 12365 df-fzo 12505 df-fl 12633 df-mod 12709 df-seq 12842 df-exp 12901 df-fac 13101 df-bc 13130 df-hash 13158 df-word 13331 df-concat 13333 df-s1 13334 df-shft 13851 df-cj 13883 df-re 13884 df-im 13885 df-sqrt 14019 df-abs 14020 df-limsup 14246 df-clim 14263 df-rlim 14264 df-o1 14265 df-lo1 14266 df-sum 14461 df-ef 14842 df-e 14843 df-sin 14844 df-cos 14845 df-pi 14847 df-dvds 15028 df-gcd 15264 df-prm 15433 df-numer 15490 df-denom 15491 df-phi 15518 df-pc 15589 df-struct 15906 df-ndx 15907 df-slot 15908 df-base 15910 df-sets 15911 df-ress 15912 df-plusg 16001 df-mulr 16002 df-starv 16003 df-sca 16004 df-vsca 16005 df-ip 16006 df-tset 16007 df-ple 16008 df-ds 16011 df-unif 16012 df-hom 16013 df-cco 16014 df-rest 16130 df-topn 16131 df-0g 16149 df-gsum 16150 df-topgen 16151 df-pt 16152 df-prds 16155 df-xrs 16209 df-qtop 16214 df-imas 16215 df-qus 16216 df-xps 16217 df-mre 16293 df-mrc 16294 df-acs 16296 df-mgm 17289 df-sgrp 17331 df-mnd 17342 df-mhm 17382 df-submnd 17383 df-grp 17472 df-minusg 17473 df-sbg 17474 df-mulg 17588 df-subg 17638 df-nsg 17639 df-eqg 17640 df-ghm 17705 df-gim 17748 df-ga 17769 df-cntz 17796 df-oppg 17822 df-od 17994 df-gex 17995 df-pgp 17996 df-lsm 18097 df-pj1 18098 df-cmn 18241 df-abl 18242 df-cyg 18326 df-dprd 18440 df-dpj 18441 df-mgp 18536 df-ur 18548 df-ring 18595 df-cring 18596 df-oppr 18669 df-dvdsr 18687 df-unit 18688 df-invr 18718 df-dvr 18729 df-rnghom 18763 df-drng 18797 df-subrg 18826 df-lmod 18913 df-lss 18981 df-lsp 19020 df-sra 19220 df-rgmod 19221 df-lidl 19222 df-rsp 19223 df-2idl 19280 df-psmet 19786 df-xmet 19787 df-met 19788 df-bl 19789 df-mopn 19790 df-fbas 19791 df-fg 19792 df-cnfld 19795 df-zring 19867 df-zrh 19900 df-zn 19903 df-top 20747 df-topon 20764 df-topsp 20785 df-bases 20798 df-cld 20871 df-ntr 20872 df-cls 20873 df-nei 20950 df-lp 20988 df-perf 20989 df-cn 21079 df-cnp 21080 df-haus 21167 df-cmp 21238 df-tx 21413 df-hmeo 21606 df-fil 21697 df-fm 21789 df-flim 21790 df-flf 21791 df-xms 22172 df-ms 22173 df-tms 22174 df-cncf 22728 df-0p 23482 df-limc 23675 df-dv 23676 df-ply 23989 df-idp 23990 df-coe 23991 df-dgr 23992 df-quot 24091 df-log 24348 df-cxp 24349 df-em 24764 df-cht 24868 df-vma 24869 df-chp 24870 df-ppi 24871 df-mu 24872 df-dchr 25003 |
This theorem is referenced by: rplogsum 25261 |
Copyright terms: Public domain | W3C validator |