Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rrhqima Structured version   Visualization version   GIF version

Theorem rrhqima 29852
Description: The ℝHom homomorphism leaves rational numbers unchanged. (Contributed by Thierry Arnoux, 27-Mar-2018.)
Assertion
Ref Expression
rrhqima ((𝑅 ∈ ℝExt ∧ 𝑄 ∈ ℚ) → ((ℝHom‘𝑅)‘𝑄) = ((ℚHom‘𝑅)‘𝑄))

Proof of Theorem rrhqima
StepHypRef Expression
1 eqid 2621 . . . . 5 (topGen‘ran (,)) = (topGen‘ran (,))
2 eqid 2621 . . . . 5 (TopOpen‘𝑅) = (TopOpen‘𝑅)
31, 2rrhval 29834 . . . 4 (𝑅 ∈ ℝExt → (ℝHom‘𝑅) = (((topGen‘ran (,))CnExt(TopOpen‘𝑅))‘(ℚHom‘𝑅)))
43fveq1d 6152 . . 3 (𝑅 ∈ ℝExt → ((ℝHom‘𝑅)‘𝑄) = ((((topGen‘ran (,))CnExt(TopOpen‘𝑅))‘(ℚHom‘𝑅))‘𝑄))
54adantr 481 . 2 ((𝑅 ∈ ℝExt ∧ 𝑄 ∈ ℚ) → ((ℝHom‘𝑅)‘𝑄) = ((((topGen‘ran (,))CnExt(TopOpen‘𝑅))‘(ℚHom‘𝑅))‘𝑄))
6 uniretop 22479 . . 3 ℝ = (topGen‘ran (,))
7 eqid 2621 . . 3 (TopOpen‘𝑅) = (TopOpen‘𝑅)
8 retop 22478 . . . 4 (topGen‘ran (,)) ∈ Top
98a1i 11 . . 3 ((𝑅 ∈ ℝExt ∧ 𝑄 ∈ ℚ) → (topGen‘ran (,)) ∈ Top)
102rrexthaus 29845 . . . 4 (𝑅 ∈ ℝExt → (TopOpen‘𝑅) ∈ Haus)
1110adantr 481 . . 3 ((𝑅 ∈ ℝExt ∧ 𝑄 ∈ ℚ) → (TopOpen‘𝑅) ∈ Haus)
12 qssre 11745 . . . 4 ℚ ⊆ ℝ
1312a1i 11 . . 3 ((𝑅 ∈ ℝExt ∧ 𝑄 ∈ ℚ) → ℚ ⊆ ℝ)
14 rrextnrg 29839 . . . . . . 7 (𝑅 ∈ ℝExt → 𝑅 ∈ NrmRing)
15 rrextdrg 29840 . . . . . . 7 (𝑅 ∈ ℝExt → 𝑅 ∈ DivRing)
1614, 15elind 3778 . . . . . 6 (𝑅 ∈ ℝExt → 𝑅 ∈ (NrmRing ∩ DivRing))
17 eqid 2621 . . . . . . 7 (ℤMod‘𝑅) = (ℤMod‘𝑅)
1817rrextnlm 29841 . . . . . 6 (𝑅 ∈ ℝExt → (ℤMod‘𝑅) ∈ NrmMod)
19 rrextchr 29842 . . . . . 6 (𝑅 ∈ ℝExt → (chr‘𝑅) = 0)
20 eqid 2621 . . . . . . 7 (ℂflds ℚ) = (ℂflds ℚ)
21 qqtopn 29849 . . . . . . 7 ((TopOpen‘ℝfld) ↾t ℚ) = (TopOpen‘(ℂflds ℚ))
2220, 21, 17, 2qqhcn 29829 . . . . . 6 ((𝑅 ∈ (NrmRing ∩ DivRing) ∧ (ℤMod‘𝑅) ∈ NrmMod ∧ (chr‘𝑅) = 0) → (ℚHom‘𝑅) ∈ (((TopOpen‘ℝfld) ↾t ℚ) Cn (TopOpen‘𝑅)))
2316, 18, 19, 22syl3anc 1323 . . . . 5 (𝑅 ∈ ℝExt → (ℚHom‘𝑅) ∈ (((TopOpen‘ℝfld) ↾t ℚ) Cn (TopOpen‘𝑅)))
24 retopn 23080 . . . . . . . 8 (topGen‘ran (,)) = (TopOpen‘ℝfld)
2524eqcomi 2630 . . . . . . 7 (TopOpen‘ℝfld) = (topGen‘ran (,))
2625oveq1i 6617 . . . . . 6 ((TopOpen‘ℝfld) ↾t ℚ) = ((topGen‘ran (,)) ↾t ℚ)
2726oveq1i 6617 . . . . 5 (((TopOpen‘ℝfld) ↾t ℚ) Cn (TopOpen‘𝑅)) = (((topGen‘ran (,)) ↾t ℚ) Cn (TopOpen‘𝑅))
2823, 27syl6eleq 2708 . . . 4 (𝑅 ∈ ℝExt → (ℚHom‘𝑅) ∈ (((topGen‘ran (,)) ↾t ℚ) Cn (TopOpen‘𝑅)))
2928adantr 481 . . 3 ((𝑅 ∈ ℝExt ∧ 𝑄 ∈ ℚ) → (ℚHom‘𝑅) ∈ (((topGen‘ran (,)) ↾t ℚ) Cn (TopOpen‘𝑅)))
30 simpr 477 . . 3 ((𝑅 ∈ ℝExt ∧ 𝑄 ∈ ℚ) → 𝑄 ∈ ℚ)
316, 7, 9, 11, 13, 29, 30cnextfres 21786 . 2 ((𝑅 ∈ ℝExt ∧ 𝑄 ∈ ℚ) → ((((topGen‘ran (,))CnExt(TopOpen‘𝑅))‘(ℚHom‘𝑅))‘𝑄) = ((ℚHom‘𝑅)‘𝑄))
325, 31eqtrd 2655 1 ((𝑅 ∈ ℝExt ∧ 𝑄 ∈ ℚ) → ((ℝHom‘𝑅)‘𝑄) = ((ℚHom‘𝑅)‘𝑄))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384   = wceq 1480  wcel 1987  cin 3555  wss 3556   cuni 4404  ran crn 5077  cfv 5849  (class class class)co 6607  cr 9882  0cc0 9883  cq 11735  (,)cioo 12120  s cress 15785  t crest 16005  TopOpenctopn 16006  topGenctg 16022  DivRingcdr 18671  fldccnfld 19668  ℤModczlm 19771  chrcchr 19772  fldcrefld 19872  Topctop 20620   Cn ccn 20941  Hauscha 21025  CnExtccnext 21776  NrmRingcnrg 22297  NrmModcnlm 22298  ℚHomcqqh 29810  ℝHomcrrh 29831   ℝExt crrext 29832
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4733  ax-sep 4743  ax-nul 4751  ax-pow 4805  ax-pr 4869  ax-un 6905  ax-inf2 8485  ax-cnex 9939  ax-resscn 9940  ax-1cn 9941  ax-icn 9942  ax-addcl 9943  ax-addrcl 9944  ax-mulcl 9945  ax-mulrcl 9946  ax-mulcom 9947  ax-addass 9948  ax-mulass 9949  ax-distr 9950  ax-i2m1 9951  ax-1ne0 9952  ax-1rid 9953  ax-rnegex 9954  ax-rrecex 9955  ax-cnre 9956  ax-pre-lttri 9957  ax-pre-lttrn 9958  ax-pre-ltadd 9959  ax-pre-mulgt0 9960  ax-pre-sup 9961  ax-addf 9962  ax-mulf 9963
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-reu 2914  df-rmo 2915  df-rab 2916  df-v 3188  df-sbc 3419  df-csb 3516  df-dif 3559  df-un 3561  df-in 3563  df-ss 3570  df-pss 3572  df-nul 3894  df-if 4061  df-pw 4134  df-sn 4151  df-pr 4153  df-tp 4155  df-op 4157  df-uni 4405  df-int 4443  df-iun 4489  df-iin 4490  df-br 4616  df-opab 4676  df-mpt 4677  df-tr 4715  df-eprel 4987  df-id 4991  df-po 4997  df-so 4998  df-fr 5035  df-se 5036  df-we 5037  df-xp 5082  df-rel 5083  df-cnv 5084  df-co 5085  df-dm 5086  df-rn 5087  df-res 5088  df-ima 5089  df-pred 5641  df-ord 5687  df-on 5688  df-lim 5689  df-suc 5690  df-iota 5812  df-fun 5851  df-fn 5852  df-f 5853  df-f1 5854  df-fo 5855  df-f1o 5856  df-fv 5857  df-isom 5858  df-riota 6568  df-ov 6610  df-oprab 6611  df-mpt2 6612  df-of 6853  df-om 7016  df-1st 7116  df-2nd 7117  df-supp 7244  df-tpos 7300  df-wrecs 7355  df-recs 7416  df-rdg 7454  df-1o 7508  df-2o 7509  df-oadd 7512  df-er 7690  df-map 7807  df-pm 7808  df-ixp 7856  df-en 7903  df-dom 7904  df-sdom 7905  df-fin 7906  df-fsupp 8223  df-fi 8264  df-sup 8295  df-inf 8296  df-oi 8362  df-card 8712  df-cda 8937  df-pnf 10023  df-mnf 10024  df-xr 10025  df-ltxr 10026  df-le 10027  df-sub 10215  df-neg 10216  df-div 10632  df-nn 10968  df-2 11026  df-3 11027  df-4 11028  df-5 11029  df-6 11030  df-7 11031  df-8 11032  df-9 11033  df-n0 11240  df-z 11325  df-dec 11441  df-uz 11635  df-q 11736  df-rp 11780  df-xneg 11893  df-xadd 11894  df-xmul 11895  df-ioo 12124  df-ico 12126  df-icc 12127  df-fz 12272  df-fzo 12410  df-fl 12536  df-mod 12612  df-seq 12745  df-exp 12804  df-hash 13061  df-cj 13776  df-re 13777  df-im 13778  df-sqrt 13912  df-abs 13913  df-dvds 14911  df-gcd 15144  df-numer 15370  df-denom 15371  df-gz 15561  df-struct 15786  df-ndx 15787  df-slot 15788  df-base 15789  df-sets 15790  df-ress 15791  df-plusg 15878  df-mulr 15879  df-starv 15880  df-sca 15881  df-vsca 15882  df-ip 15883  df-tset 15884  df-ple 15885  df-ds 15888  df-unif 15889  df-hom 15890  df-cco 15891  df-rest 16007  df-topn 16008  df-0g 16026  df-gsum 16027  df-topgen 16028  df-pt 16029  df-prds 16032  df-xrs 16086  df-qtop 16091  df-imas 16092  df-xps 16094  df-mre 16170  df-mrc 16171  df-acs 16173  df-plusf 17165  df-mgm 17166  df-sgrp 17208  df-mnd 17219  df-mhm 17259  df-submnd 17260  df-grp 17349  df-minusg 17350  df-sbg 17351  df-mulg 17465  df-subg 17515  df-ghm 17582  df-cntz 17674  df-od 17872  df-cmn 18119  df-abl 18120  df-mgp 18414  df-ur 18426  df-ring 18473  df-cring 18474  df-oppr 18547  df-dvdsr 18565  df-unit 18566  df-invr 18596  df-dvr 18607  df-rnghom 18639  df-drng 18673  df-subrg 18702  df-abv 18741  df-lmod 18789  df-scaf 18790  df-sra 19094  df-rgmod 19095  df-nzr 19180  df-psmet 19660  df-xmet 19661  df-met 19662  df-bl 19663  df-mopn 19664  df-fbas 19665  df-fg 19666  df-cnfld 19669  df-zring 19741  df-zrh 19774  df-zlm 19775  df-chr 19776  df-refld 19873  df-top 20621  df-topon 20638  df-topsp 20651  df-bases 20664  df-cld 20736  df-ntr 20737  df-cls 20738  df-nei 20815  df-cn 20944  df-cnp 20945  df-haus 21032  df-tx 21278  df-hmeo 21471  df-fil 21563  df-fm 21655  df-flim 21656  df-flf 21657  df-cnext 21777  df-tmd 21789  df-tgp 21790  df-trg 21876  df-xms 22038  df-ms 22039  df-tms 22040  df-nm 22300  df-ngp 22301  df-nrg 22303  df-nlm 22304  df-qqh 29811  df-rrh 29833  df-rrext 29837
This theorem is referenced by:  rrh0  29853
  Copyright terms: Public domain W3C validator