Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rrndistlt Structured version   Visualization version   GIF version

Theorem rrndistlt 39843
Description: Given two points in the space of n-dimensional real numbers, if every component is closer than 𝐸 then the distance between the two points is less then ((√‘𝑛) · 𝐸) (Contributed by Glauco Siliprandi, 24-Dec-2020.)
Hypotheses
Ref Expression
rrndistlt.i (𝜑𝐼 ∈ Fin)
rrndistlt.z (𝜑𝐼 ≠ ∅)
rrndistlt.n 𝑁 = (#‘𝐼)
rrndistlt.x (𝜑𝑋 ∈ (ℝ ↑𝑚 𝐼))
rrndistlt.y (𝜑𝑌 ∈ (ℝ ↑𝑚 𝐼))
rrndistlt.l ((𝜑𝑖𝐼) → (abs‘((𝑋𝑖) − (𝑌𝑖))) < 𝐸)
rrndistlt.e (𝜑𝐸 ∈ ℝ+)
rrndistlt.d 𝐷 = (dist‘(ℝ^‘𝐼))
Assertion
Ref Expression
rrndistlt (𝜑 → (𝑋𝐷𝑌) < ((√‘𝑁) · 𝐸))
Distinct variable groups:   𝑖,𝐸   𝑖,𝐼   𝑖,𝑋   𝑖,𝑌   𝜑,𝑖
Allowed substitution hints:   𝐷(𝑖)   𝑁(𝑖)

Proof of Theorem rrndistlt
Dummy variables 𝑓 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rrndistlt.i . . . . 5 (𝜑𝐼 ∈ Fin)
2 rrndistlt.z . . . . 5 (𝜑𝐼 ≠ ∅)
3 rrndistlt.x . . . . . . . . . . 11 (𝜑𝑋 ∈ (ℝ ↑𝑚 𝐼))
4 elmapi 7831 . . . . . . . . . . 11 (𝑋 ∈ (ℝ ↑𝑚 𝐼) → 𝑋:𝐼⟶ℝ)
53, 4syl 17 . . . . . . . . . 10 (𝜑𝑋:𝐼⟶ℝ)
6 ax-resscn 9945 . . . . . . . . . . 11 ℝ ⊆ ℂ
76a1i 11 . . . . . . . . . 10 (𝜑 → ℝ ⊆ ℂ)
85, 7fssd 6019 . . . . . . . . 9 (𝜑𝑋:𝐼⟶ℂ)
98ffvelrnda 6320 . . . . . . . 8 ((𝜑𝑖𝐼) → (𝑋𝑖) ∈ ℂ)
10 rrndistlt.y . . . . . . . . . . 11 (𝜑𝑌 ∈ (ℝ ↑𝑚 𝐼))
11 elmapi 7831 . . . . . . . . . . 11 (𝑌 ∈ (ℝ ↑𝑚 𝐼) → 𝑌:𝐼⟶ℝ)
1210, 11syl 17 . . . . . . . . . 10 (𝜑𝑌:𝐼⟶ℝ)
1312, 7fssd 6019 . . . . . . . . 9 (𝜑𝑌:𝐼⟶ℂ)
1413ffvelrnda 6320 . . . . . . . 8 ((𝜑𝑖𝐼) → (𝑌𝑖) ∈ ℂ)
159, 14subcld 10344 . . . . . . 7 ((𝜑𝑖𝐼) → ((𝑋𝑖) − (𝑌𝑖)) ∈ ℂ)
1615abscld 14117 . . . . . 6 ((𝜑𝑖𝐼) → (abs‘((𝑋𝑖) − (𝑌𝑖))) ∈ ℝ)
1716resqcld 12983 . . . . 5 ((𝜑𝑖𝐼) → ((abs‘((𝑋𝑖) − (𝑌𝑖)))↑2) ∈ ℝ)
18 rrndistlt.e . . . . . . . 8 (𝜑𝐸 ∈ ℝ+)
1918rpred 11824 . . . . . . 7 (𝜑𝐸 ∈ ℝ)
2019resqcld 12983 . . . . . 6 (𝜑 → (𝐸↑2) ∈ ℝ)
2120adantr 481 . . . . 5 ((𝜑𝑖𝐼) → (𝐸↑2) ∈ ℝ)
22 rrndistlt.l . . . . . 6 ((𝜑𝑖𝐼) → (abs‘((𝑋𝑖) − (𝑌𝑖))) < 𝐸)
2315absge0d 14125 . . . . . . 7 ((𝜑𝑖𝐼) → 0 ≤ (abs‘((𝑋𝑖) − (𝑌𝑖))))
2419adantr 481 . . . . . . 7 ((𝜑𝑖𝐼) → 𝐸 ∈ ℝ)
2518adantr 481 . . . . . . . 8 ((𝜑𝑖𝐼) → 𝐸 ∈ ℝ+)
2625rpge0d 11828 . . . . . . 7 ((𝜑𝑖𝐼) → 0 ≤ 𝐸)
27 lt2sq 12885 . . . . . . 7 ((((abs‘((𝑋𝑖) − (𝑌𝑖))) ∈ ℝ ∧ 0 ≤ (abs‘((𝑋𝑖) − (𝑌𝑖)))) ∧ (𝐸 ∈ ℝ ∧ 0 ≤ 𝐸)) → ((abs‘((𝑋𝑖) − (𝑌𝑖))) < 𝐸 ↔ ((abs‘((𝑋𝑖) − (𝑌𝑖)))↑2) < (𝐸↑2)))
2816, 23, 24, 26, 27syl22anc 1324 . . . . . 6 ((𝜑𝑖𝐼) → ((abs‘((𝑋𝑖) − (𝑌𝑖))) < 𝐸 ↔ ((abs‘((𝑋𝑖) − (𝑌𝑖)))↑2) < (𝐸↑2)))
2922, 28mpbid 222 . . . . 5 ((𝜑𝑖𝐼) → ((abs‘((𝑋𝑖) − (𝑌𝑖)))↑2) < (𝐸↑2))
301, 2, 17, 21, 29fsumlt 14470 . . . 4 (𝜑 → Σ𝑖𝐼 ((abs‘((𝑋𝑖) − (𝑌𝑖)))↑2) < Σ𝑖𝐼 (𝐸↑2))
315ffvelrnda 6320 . . . . . . . . 9 ((𝜑𝑖𝐼) → (𝑋𝑖) ∈ ℝ)
3212ffvelrnda 6320 . . . . . . . . 9 ((𝜑𝑖𝐼) → (𝑌𝑖) ∈ ℝ)
3331, 32resubcld 10410 . . . . . . . 8 ((𝜑𝑖𝐼) → ((𝑋𝑖) − (𝑌𝑖)) ∈ ℝ)
34 absresq 13984 . . . . . . . 8 (((𝑋𝑖) − (𝑌𝑖)) ∈ ℝ → ((abs‘((𝑋𝑖) − (𝑌𝑖)))↑2) = (((𝑋𝑖) − (𝑌𝑖))↑2))
3533, 34syl 17 . . . . . . 7 ((𝜑𝑖𝐼) → ((abs‘((𝑋𝑖) − (𝑌𝑖)))↑2) = (((𝑋𝑖) − (𝑌𝑖))↑2))
3635eqcomd 2627 . . . . . 6 ((𝜑𝑖𝐼) → (((𝑋𝑖) − (𝑌𝑖))↑2) = ((abs‘((𝑋𝑖) − (𝑌𝑖)))↑2))
3736sumeq2dv 14375 . . . . 5 (𝜑 → Σ𝑖𝐼 (((𝑋𝑖) − (𝑌𝑖))↑2) = Σ𝑖𝐼 ((abs‘((𝑋𝑖) − (𝑌𝑖)))↑2))
386, 20sseldi 3585 . . . . . . 7 (𝜑 → (𝐸↑2) ∈ ℂ)
39 fsumconst 14461 . . . . . . 7 ((𝐼 ∈ Fin ∧ (𝐸↑2) ∈ ℂ) → Σ𝑖𝐼 (𝐸↑2) = ((#‘𝐼) · (𝐸↑2)))
401, 38, 39syl2anc 692 . . . . . 6 (𝜑 → Σ𝑖𝐼 (𝐸↑2) = ((#‘𝐼) · (𝐸↑2)))
41 rrndistlt.n . . . . . . . . 9 𝑁 = (#‘𝐼)
42 eqcom 2628 . . . . . . . . 9 (𝑁 = (#‘𝐼) ↔ (#‘𝐼) = 𝑁)
4341, 42mpbi 220 . . . . . . . 8 (#‘𝐼) = 𝑁
4443oveq1i 6620 . . . . . . 7 ((#‘𝐼) · (𝐸↑2)) = (𝑁 · (𝐸↑2))
4544a1i 11 . . . . . 6 (𝜑 → ((#‘𝐼) · (𝐸↑2)) = (𝑁 · (𝐸↑2)))
4640, 45eqtr2d 2656 . . . . 5 (𝜑 → (𝑁 · (𝐸↑2)) = Σ𝑖𝐼 (𝐸↑2))
4737, 46breq12d 4631 . . . 4 (𝜑 → (Σ𝑖𝐼 (((𝑋𝑖) − (𝑌𝑖))↑2) < (𝑁 · (𝐸↑2)) ↔ Σ𝑖𝐼 ((abs‘((𝑋𝑖) − (𝑌𝑖)))↑2) < Σ𝑖𝐼 (𝐸↑2)))
4830, 47mpbird 247 . . 3 (𝜑 → Σ𝑖𝐼 (((𝑋𝑖) − (𝑌𝑖))↑2) < (𝑁 · (𝐸↑2)))
49 nfv 1840 . . . . 5 𝑖𝜑
5033resqcld 12983 . . . . 5 ((𝜑𝑖𝐼) → (((𝑋𝑖) − (𝑌𝑖))↑2) ∈ ℝ)
5149, 1, 50fsumreclf 39240 . . . 4 (𝜑 → Σ𝑖𝐼 (((𝑋𝑖) − (𝑌𝑖))↑2) ∈ ℝ)
5233sqge0d 12984 . . . . 5 ((𝜑𝑖𝐼) → 0 ≤ (((𝑋𝑖) − (𝑌𝑖))↑2))
531, 50, 52fsumge0 14465 . . . 4 (𝜑 → 0 ≤ Σ𝑖𝐼 (((𝑋𝑖) − (𝑌𝑖))↑2))
54 hashcl 13095 . . . . . . . 8 (𝐼 ∈ Fin → (#‘𝐼) ∈ ℕ0)
551, 54syl 17 . . . . . . 7 (𝜑 → (#‘𝐼) ∈ ℕ0)
5641, 55syl5eqel 2702 . . . . . 6 (𝜑𝑁 ∈ ℕ0)
5756nn0red 11304 . . . . 5 (𝜑𝑁 ∈ ℝ)
5857, 20remulcld 10022 . . . 4 (𝜑 → (𝑁 · (𝐸↑2)) ∈ ℝ)
5956nn0ge0d 11306 . . . . 5 (𝜑 → 0 ≤ 𝑁)
6019sqge0d 12984 . . . . 5 (𝜑 → 0 ≤ (𝐸↑2))
6157, 20, 59, 60mulge0d 10556 . . . 4 (𝜑 → 0 ≤ (𝑁 · (𝐸↑2)))
6251, 53, 58, 61sqrtltd 14108 . . 3 (𝜑 → (Σ𝑖𝐼 (((𝑋𝑖) − (𝑌𝑖))↑2) < (𝑁 · (𝐸↑2)) ↔ (√‘Σ𝑖𝐼 (((𝑋𝑖) − (𝑌𝑖))↑2)) < (√‘(𝑁 · (𝐸↑2)))))
6348, 62mpbid 222 . 2 (𝜑 → (√‘Σ𝑖𝐼 (((𝑋𝑖) − (𝑌𝑖))↑2)) < (√‘(𝑁 · (𝐸↑2))))
64 rrndistlt.d . . . . . 6 𝐷 = (dist‘(ℝ^‘𝐼))
6564a1i 11 . . . . 5 (𝜑𝐷 = (dist‘(ℝ^‘𝐼)))
66 eqid 2621 . . . . . . 7 (ℝ^‘𝐼) = (ℝ^‘𝐼)
67 eqid 2621 . . . . . . 7 (ℝ ↑𝑚 𝐼) = (ℝ ↑𝑚 𝐼)
6866, 67rrxdsfi 39838 . . . . . 6 (𝐼 ∈ Fin → (dist‘(ℝ^‘𝐼)) = (𝑓 ∈ (ℝ ↑𝑚 𝐼), 𝑔 ∈ (ℝ ↑𝑚 𝐼) ↦ (√‘Σ𝑖𝐼 (((𝑓𝑖) − (𝑔𝑖))↑2))))
691, 68syl 17 . . . . 5 (𝜑 → (dist‘(ℝ^‘𝐼)) = (𝑓 ∈ (ℝ ↑𝑚 𝐼), 𝑔 ∈ (ℝ ↑𝑚 𝐼) ↦ (√‘Σ𝑖𝐼 (((𝑓𝑖) − (𝑔𝑖))↑2))))
7065, 69eqtrd 2655 . . . 4 (𝜑𝐷 = (𝑓 ∈ (ℝ ↑𝑚 𝐼), 𝑔 ∈ (ℝ ↑𝑚 𝐼) ↦ (√‘Σ𝑖𝐼 (((𝑓𝑖) − (𝑔𝑖))↑2))))
71 fveq1 6152 . . . . . . . . . 10 (𝑓 = 𝑋 → (𝑓𝑖) = (𝑋𝑖))
7271adantr 481 . . . . . . . . 9 ((𝑓 = 𝑋𝑔 = 𝑌) → (𝑓𝑖) = (𝑋𝑖))
73 fveq1 6152 . . . . . . . . . 10 (𝑔 = 𝑌 → (𝑔𝑖) = (𝑌𝑖))
7473adantl 482 . . . . . . . . 9 ((𝑓 = 𝑋𝑔 = 𝑌) → (𝑔𝑖) = (𝑌𝑖))
7572, 74oveq12d 6628 . . . . . . . 8 ((𝑓 = 𝑋𝑔 = 𝑌) → ((𝑓𝑖) − (𝑔𝑖)) = ((𝑋𝑖) − (𝑌𝑖)))
7675oveq1d 6625 . . . . . . 7 ((𝑓 = 𝑋𝑔 = 𝑌) → (((𝑓𝑖) − (𝑔𝑖))↑2) = (((𝑋𝑖) − (𝑌𝑖))↑2))
7776sumeq2ad 39232 . . . . . 6 ((𝑓 = 𝑋𝑔 = 𝑌) → Σ𝑖𝐼 (((𝑓𝑖) − (𝑔𝑖))↑2) = Σ𝑖𝐼 (((𝑋𝑖) − (𝑌𝑖))↑2))
7877fveq2d 6157 . . . . 5 ((𝑓 = 𝑋𝑔 = 𝑌) → (√‘Σ𝑖𝐼 (((𝑓𝑖) − (𝑔𝑖))↑2)) = (√‘Σ𝑖𝐼 (((𝑋𝑖) − (𝑌𝑖))↑2)))
7978adantl 482 . . . 4 ((𝜑 ∧ (𝑓 = 𝑋𝑔 = 𝑌)) → (√‘Σ𝑖𝐼 (((𝑓𝑖) − (𝑔𝑖))↑2)) = (√‘Σ𝑖𝐼 (((𝑋𝑖) − (𝑌𝑖))↑2)))
8051, 53resqrtcld 14098 . . . 4 (𝜑 → (√‘Σ𝑖𝐼 (((𝑋𝑖) − (𝑌𝑖))↑2)) ∈ ℝ)
8170, 79, 3, 10, 80ovmpt2d 6748 . . 3 (𝜑 → (𝑋𝐷𝑌) = (√‘Σ𝑖𝐼 (((𝑋𝑖) − (𝑌𝑖))↑2)))
82 sqrtmul 13942 . . . . 5 (((𝑁 ∈ ℝ ∧ 0 ≤ 𝑁) ∧ ((𝐸↑2) ∈ ℝ ∧ 0 ≤ (𝐸↑2))) → (√‘(𝑁 · (𝐸↑2))) = ((√‘𝑁) · (√‘(𝐸↑2))))
8357, 59, 20, 60, 82syl22anc 1324 . . . 4 (𝜑 → (√‘(𝑁 · (𝐸↑2))) = ((√‘𝑁) · (√‘(𝐸↑2))))
8418rpge0d 11828 . . . . . 6 (𝜑 → 0 ≤ 𝐸)
8519, 84sqrtsqd 14100 . . . . 5 (𝜑 → (√‘(𝐸↑2)) = 𝐸)
8685oveq2d 6626 . . . 4 (𝜑 → ((√‘𝑁) · (√‘(𝐸↑2))) = ((√‘𝑁) · 𝐸))
8783, 86eqtr2d 2656 . . 3 (𝜑 → ((√‘𝑁) · 𝐸) = (√‘(𝑁 · (𝐸↑2))))
8881, 87breq12d 4631 . 2 (𝜑 → ((𝑋𝐷𝑌) < ((√‘𝑁) · 𝐸) ↔ (√‘Σ𝑖𝐼 (((𝑋𝑖) − (𝑌𝑖))↑2)) < (√‘(𝑁 · (𝐸↑2)))))
8963, 88mpbird 247 1 (𝜑 → (𝑋𝐷𝑌) < ((√‘𝑁) · 𝐸))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384   = wceq 1480  wcel 1987  wne 2790  wss 3559  c0 3896   class class class wbr 4618  wf 5848  cfv 5852  (class class class)co 6610  cmpt2 6612  𝑚 cmap 7809  Fincfn 7907  cc 9886  cr 9887  0cc0 9888   · cmul 9893   < clt 10026  cle 10027  cmin 10218  2c2 11022  0cn0 11244  +crp 11784  cexp 12808  #chash 13065  csqrt 13915  abscabs 13916  Σcsu 14358  distcds 15882  ℝ^crrx 23094
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4736  ax-sep 4746  ax-nul 4754  ax-pow 4808  ax-pr 4872  ax-un 6909  ax-inf2 8490  ax-cnex 9944  ax-resscn 9945  ax-1cn 9946  ax-icn 9947  ax-addcl 9948  ax-addrcl 9949  ax-mulcl 9950  ax-mulrcl 9951  ax-mulcom 9952  ax-addass 9953  ax-mulass 9954  ax-distr 9955  ax-i2m1 9956  ax-1ne0 9957  ax-1rid 9958  ax-rnegex 9959  ax-rrecex 9960  ax-cnre 9961  ax-pre-lttri 9962  ax-pre-lttrn 9963  ax-pre-ltadd 9964  ax-pre-mulgt0 9965  ax-pre-sup 9966  ax-addf 9967  ax-mulf 9968
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-fal 1486  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-reu 2914  df-rmo 2915  df-rab 2916  df-v 3191  df-sbc 3422  df-csb 3519  df-dif 3562  df-un 3564  df-in 3566  df-ss 3573  df-pss 3575  df-nul 3897  df-if 4064  df-pw 4137  df-sn 4154  df-pr 4156  df-tp 4158  df-op 4160  df-uni 4408  df-int 4446  df-iun 4492  df-br 4619  df-opab 4679  df-mpt 4680  df-tr 4718  df-eprel 4990  df-id 4994  df-po 5000  df-so 5001  df-fr 5038  df-se 5039  df-we 5040  df-xp 5085  df-rel 5086  df-cnv 5087  df-co 5088  df-dm 5089  df-rn 5090  df-res 5091  df-ima 5092  df-pred 5644  df-ord 5690  df-on 5691  df-lim 5692  df-suc 5693  df-iota 5815  df-fun 5854  df-fn 5855  df-f 5856  df-f1 5857  df-fo 5858  df-f1o 5859  df-fv 5860  df-isom 5861  df-riota 6571  df-ov 6613  df-oprab 6614  df-mpt2 6615  df-of 6857  df-om 7020  df-1st 7120  df-2nd 7121  df-supp 7248  df-tpos 7304  df-wrecs 7359  df-recs 7420  df-rdg 7458  df-1o 7512  df-oadd 7516  df-er 7694  df-map 7811  df-ixp 7861  df-en 7908  df-dom 7909  df-sdom 7910  df-fin 7911  df-fsupp 8228  df-sup 8300  df-oi 8367  df-card 8717  df-pnf 10028  df-mnf 10029  df-xr 10030  df-ltxr 10031  df-le 10032  df-sub 10220  df-neg 10221  df-div 10637  df-nn 10973  df-2 11031  df-3 11032  df-4 11033  df-5 11034  df-6 11035  df-7 11036  df-8 11037  df-9 11038  df-n0 11245  df-z 11330  df-dec 11446  df-uz 11640  df-rp 11785  df-ico 12131  df-fz 12277  df-fzo 12415  df-seq 12750  df-exp 12809  df-hash 13066  df-cj 13781  df-re 13782  df-im 13783  df-sqrt 13917  df-abs 13918  df-clim 14161  df-sum 14359  df-struct 15794  df-ndx 15795  df-slot 15796  df-base 15797  df-sets 15798  df-ress 15799  df-plusg 15886  df-mulr 15887  df-starv 15888  df-sca 15889  df-vsca 15890  df-ip 15891  df-tset 15892  df-ple 15893  df-ds 15896  df-unif 15897  df-hom 15898  df-cco 15899  df-0g 16034  df-gsum 16035  df-prds 16040  df-pws 16042  df-mgm 17174  df-sgrp 17216  df-mnd 17227  df-mhm 17267  df-grp 17357  df-minusg 17358  df-sbg 17359  df-subg 17523  df-ghm 17590  df-cntz 17682  df-cmn 18127  df-abl 18128  df-mgp 18422  df-ur 18434  df-ring 18481  df-cring 18482  df-oppr 18555  df-dvdsr 18573  df-unit 18574  df-invr 18604  df-dvr 18615  df-rnghom 18647  df-drng 18681  df-field 18682  df-subrg 18710  df-staf 18777  df-srng 18778  df-lmod 18797  df-lss 18865  df-sra 19104  df-rgmod 19105  df-cnfld 19679  df-refld 19883  df-dsmm 20008  df-frlm 20023  df-nm 22310  df-tng 22312  df-tch 22892  df-rrx 23096
This theorem is referenced by:  qndenserrnbllem  39847
  Copyright terms: Public domain W3C validator