Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rrndstprj2 Structured version   Visualization version   GIF version

Theorem rrndstprj2 33297
Description: Bound on the distance between two points in Euclidean space given bounds on the distances in each coordinate. This theorem and rrndstprj1 33296 can be used to show that the supremum norm and Euclidean norm are equivalent. (Contributed by Jeff Madsen, 2-Sep-2009.) (Revised by Mario Carneiro, 13-Sep-2015.)
Hypotheses
Ref Expression
rrnval.1 𝑋 = (ℝ ↑𝑚 𝐼)
rrndstprj1.1 𝑀 = ((abs ∘ − ) ↾ (ℝ × ℝ))
Assertion
Ref Expression
rrndstprj2 (((𝐼 ∈ (Fin ∖ {∅}) ∧ 𝐹𝑋𝐺𝑋) ∧ (𝑅 ∈ ℝ+ ∧ ∀𝑛𝐼 ((𝐹𝑛)𝑀(𝐺𝑛)) < 𝑅)) → (𝐹(ℝn𝐼)𝐺) < (𝑅 · (√‘(#‘𝐼))))
Distinct variable groups:   𝑛,𝐺   𝑛,𝐼   𝑛,𝑀   𝑅,𝑛   𝑛,𝐹
Allowed substitution hint:   𝑋(𝑛)

Proof of Theorem rrndstprj2
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 simpl1 1062 . . . 4 (((𝐼 ∈ (Fin ∖ {∅}) ∧ 𝐹𝑋𝐺𝑋) ∧ (𝑅 ∈ ℝ+ ∧ ∀𝑛𝐼 ((𝐹𝑛)𝑀(𝐺𝑛)) < 𝑅)) → 𝐼 ∈ (Fin ∖ {∅}))
21eldifad 3571 . . 3 (((𝐼 ∈ (Fin ∖ {∅}) ∧ 𝐹𝑋𝐺𝑋) ∧ (𝑅 ∈ ℝ+ ∧ ∀𝑛𝐼 ((𝐹𝑛)𝑀(𝐺𝑛)) < 𝑅)) → 𝐼 ∈ Fin)
3 simpl2 1063 . . 3 (((𝐼 ∈ (Fin ∖ {∅}) ∧ 𝐹𝑋𝐺𝑋) ∧ (𝑅 ∈ ℝ+ ∧ ∀𝑛𝐼 ((𝐹𝑛)𝑀(𝐺𝑛)) < 𝑅)) → 𝐹𝑋)
4 simpl3 1064 . . 3 (((𝐼 ∈ (Fin ∖ {∅}) ∧ 𝐹𝑋𝐺𝑋) ∧ (𝑅 ∈ ℝ+ ∧ ∀𝑛𝐼 ((𝐹𝑛)𝑀(𝐺𝑛)) < 𝑅)) → 𝐺𝑋)
5 rrnval.1 . . . 4 𝑋 = (ℝ ↑𝑚 𝐼)
65rrnmval 33294 . . 3 ((𝐼 ∈ Fin ∧ 𝐹𝑋𝐺𝑋) → (𝐹(ℝn𝐼)𝐺) = (√‘Σ𝑘𝐼 (((𝐹𝑘) − (𝐺𝑘))↑2)))
72, 3, 4, 6syl3anc 1323 . 2 (((𝐼 ∈ (Fin ∖ {∅}) ∧ 𝐹𝑋𝐺𝑋) ∧ (𝑅 ∈ ℝ+ ∧ ∀𝑛𝐼 ((𝐹𝑛)𝑀(𝐺𝑛)) < 𝑅)) → (𝐹(ℝn𝐼)𝐺) = (√‘Σ𝑘𝐼 (((𝐹𝑘) − (𝐺𝑘))↑2)))
8 eldifsni 4294 . . . . . 6 (𝐼 ∈ (Fin ∖ {∅}) → 𝐼 ≠ ∅)
91, 8syl 17 . . . . 5 (((𝐼 ∈ (Fin ∖ {∅}) ∧ 𝐹𝑋𝐺𝑋) ∧ (𝑅 ∈ ℝ+ ∧ ∀𝑛𝐼 ((𝐹𝑛)𝑀(𝐺𝑛)) < 𝑅)) → 𝐼 ≠ ∅)
103, 5syl6eleq 2708 . . . . . . . . 9 (((𝐼 ∈ (Fin ∖ {∅}) ∧ 𝐹𝑋𝐺𝑋) ∧ (𝑅 ∈ ℝ+ ∧ ∀𝑛𝐼 ((𝐹𝑛)𝑀(𝐺𝑛)) < 𝑅)) → 𝐹 ∈ (ℝ ↑𝑚 𝐼))
11 elmapi 7831 . . . . . . . . 9 (𝐹 ∈ (ℝ ↑𝑚 𝐼) → 𝐹:𝐼⟶ℝ)
1210, 11syl 17 . . . . . . . 8 (((𝐼 ∈ (Fin ∖ {∅}) ∧ 𝐹𝑋𝐺𝑋) ∧ (𝑅 ∈ ℝ+ ∧ ∀𝑛𝐼 ((𝐹𝑛)𝑀(𝐺𝑛)) < 𝑅)) → 𝐹:𝐼⟶ℝ)
1312ffvelrnda 6320 . . . . . . 7 ((((𝐼 ∈ (Fin ∖ {∅}) ∧ 𝐹𝑋𝐺𝑋) ∧ (𝑅 ∈ ℝ+ ∧ ∀𝑛𝐼 ((𝐹𝑛)𝑀(𝐺𝑛)) < 𝑅)) ∧ 𝑘𝐼) → (𝐹𝑘) ∈ ℝ)
144, 5syl6eleq 2708 . . . . . . . . 9 (((𝐼 ∈ (Fin ∖ {∅}) ∧ 𝐹𝑋𝐺𝑋) ∧ (𝑅 ∈ ℝ+ ∧ ∀𝑛𝐼 ((𝐹𝑛)𝑀(𝐺𝑛)) < 𝑅)) → 𝐺 ∈ (ℝ ↑𝑚 𝐼))
15 elmapi 7831 . . . . . . . . 9 (𝐺 ∈ (ℝ ↑𝑚 𝐼) → 𝐺:𝐼⟶ℝ)
1614, 15syl 17 . . . . . . . 8 (((𝐼 ∈ (Fin ∖ {∅}) ∧ 𝐹𝑋𝐺𝑋) ∧ (𝑅 ∈ ℝ+ ∧ ∀𝑛𝐼 ((𝐹𝑛)𝑀(𝐺𝑛)) < 𝑅)) → 𝐺:𝐼⟶ℝ)
1716ffvelrnda 6320 . . . . . . 7 ((((𝐼 ∈ (Fin ∖ {∅}) ∧ 𝐹𝑋𝐺𝑋) ∧ (𝑅 ∈ ℝ+ ∧ ∀𝑛𝐼 ((𝐹𝑛)𝑀(𝐺𝑛)) < 𝑅)) ∧ 𝑘𝐼) → (𝐺𝑘) ∈ ℝ)
1813, 17resubcld 10410 . . . . . 6 ((((𝐼 ∈ (Fin ∖ {∅}) ∧ 𝐹𝑋𝐺𝑋) ∧ (𝑅 ∈ ℝ+ ∧ ∀𝑛𝐼 ((𝐹𝑛)𝑀(𝐺𝑛)) < 𝑅)) ∧ 𝑘𝐼) → ((𝐹𝑘) − (𝐺𝑘)) ∈ ℝ)
1918resqcld 12983 . . . . 5 ((((𝐼 ∈ (Fin ∖ {∅}) ∧ 𝐹𝑋𝐺𝑋) ∧ (𝑅 ∈ ℝ+ ∧ ∀𝑛𝐼 ((𝐹𝑛)𝑀(𝐺𝑛)) < 𝑅)) ∧ 𝑘𝐼) → (((𝐹𝑘) − (𝐺𝑘))↑2) ∈ ℝ)
20 simprl 793 . . . . . . . 8 (((𝐼 ∈ (Fin ∖ {∅}) ∧ 𝐹𝑋𝐺𝑋) ∧ (𝑅 ∈ ℝ+ ∧ ∀𝑛𝐼 ((𝐹𝑛)𝑀(𝐺𝑛)) < 𝑅)) → 𝑅 ∈ ℝ+)
2120rpred 11824 . . . . . . 7 (((𝐼 ∈ (Fin ∖ {∅}) ∧ 𝐹𝑋𝐺𝑋) ∧ (𝑅 ∈ ℝ+ ∧ ∀𝑛𝐼 ((𝐹𝑛)𝑀(𝐺𝑛)) < 𝑅)) → 𝑅 ∈ ℝ)
2221resqcld 12983 . . . . . 6 (((𝐼 ∈ (Fin ∖ {∅}) ∧ 𝐹𝑋𝐺𝑋) ∧ (𝑅 ∈ ℝ+ ∧ ∀𝑛𝐼 ((𝐹𝑛)𝑀(𝐺𝑛)) < 𝑅)) → (𝑅↑2) ∈ ℝ)
2322adantr 481 . . . . 5 ((((𝐼 ∈ (Fin ∖ {∅}) ∧ 𝐹𝑋𝐺𝑋) ∧ (𝑅 ∈ ℝ+ ∧ ∀𝑛𝐼 ((𝐹𝑛)𝑀(𝐺𝑛)) < 𝑅)) ∧ 𝑘𝐼) → (𝑅↑2) ∈ ℝ)
24 absresq 13984 . . . . . . 7 (((𝐹𝑘) − (𝐺𝑘)) ∈ ℝ → ((abs‘((𝐹𝑘) − (𝐺𝑘)))↑2) = (((𝐹𝑘) − (𝐺𝑘))↑2))
2518, 24syl 17 . . . . . 6 ((((𝐼 ∈ (Fin ∖ {∅}) ∧ 𝐹𝑋𝐺𝑋) ∧ (𝑅 ∈ ℝ+ ∧ ∀𝑛𝐼 ((𝐹𝑛)𝑀(𝐺𝑛)) < 𝑅)) ∧ 𝑘𝐼) → ((abs‘((𝐹𝑘) − (𝐺𝑘)))↑2) = (((𝐹𝑘) − (𝐺𝑘))↑2))
26 rrndstprj1.1 . . . . . . . . . 10 𝑀 = ((abs ∘ − ) ↾ (ℝ × ℝ))
2726remetdval 22515 . . . . . . . . 9 (((𝐹𝑘) ∈ ℝ ∧ (𝐺𝑘) ∈ ℝ) → ((𝐹𝑘)𝑀(𝐺𝑘)) = (abs‘((𝐹𝑘) − (𝐺𝑘))))
2813, 17, 27syl2anc 692 . . . . . . . 8 ((((𝐼 ∈ (Fin ∖ {∅}) ∧ 𝐹𝑋𝐺𝑋) ∧ (𝑅 ∈ ℝ+ ∧ ∀𝑛𝐼 ((𝐹𝑛)𝑀(𝐺𝑛)) < 𝑅)) ∧ 𝑘𝐼) → ((𝐹𝑘)𝑀(𝐺𝑘)) = (abs‘((𝐹𝑘) − (𝐺𝑘))))
29 simprr 795 . . . . . . . . 9 (((𝐼 ∈ (Fin ∖ {∅}) ∧ 𝐹𝑋𝐺𝑋) ∧ (𝑅 ∈ ℝ+ ∧ ∀𝑛𝐼 ((𝐹𝑛)𝑀(𝐺𝑛)) < 𝑅)) → ∀𝑛𝐼 ((𝐹𝑛)𝑀(𝐺𝑛)) < 𝑅)
30 fveq2 6153 . . . . . . . . . . . 12 (𝑛 = 𝑘 → (𝐹𝑛) = (𝐹𝑘))
31 fveq2 6153 . . . . . . . . . . . 12 (𝑛 = 𝑘 → (𝐺𝑛) = (𝐺𝑘))
3230, 31oveq12d 6628 . . . . . . . . . . 11 (𝑛 = 𝑘 → ((𝐹𝑛)𝑀(𝐺𝑛)) = ((𝐹𝑘)𝑀(𝐺𝑘)))
3332breq1d 4628 . . . . . . . . . 10 (𝑛 = 𝑘 → (((𝐹𝑛)𝑀(𝐺𝑛)) < 𝑅 ↔ ((𝐹𝑘)𝑀(𝐺𝑘)) < 𝑅))
3433rspccva 3297 . . . . . . . . 9 ((∀𝑛𝐼 ((𝐹𝑛)𝑀(𝐺𝑛)) < 𝑅𝑘𝐼) → ((𝐹𝑘)𝑀(𝐺𝑘)) < 𝑅)
3529, 34sylan 488 . . . . . . . 8 ((((𝐼 ∈ (Fin ∖ {∅}) ∧ 𝐹𝑋𝐺𝑋) ∧ (𝑅 ∈ ℝ+ ∧ ∀𝑛𝐼 ((𝐹𝑛)𝑀(𝐺𝑛)) < 𝑅)) ∧ 𝑘𝐼) → ((𝐹𝑘)𝑀(𝐺𝑘)) < 𝑅)
3628, 35eqbrtrrd 4642 . . . . . . 7 ((((𝐼 ∈ (Fin ∖ {∅}) ∧ 𝐹𝑋𝐺𝑋) ∧ (𝑅 ∈ ℝ+ ∧ ∀𝑛𝐼 ((𝐹𝑛)𝑀(𝐺𝑛)) < 𝑅)) ∧ 𝑘𝐼) → (abs‘((𝐹𝑘) − (𝐺𝑘))) < 𝑅)
3718recnd 10020 . . . . . . . . 9 ((((𝐼 ∈ (Fin ∖ {∅}) ∧ 𝐹𝑋𝐺𝑋) ∧ (𝑅 ∈ ℝ+ ∧ ∀𝑛𝐼 ((𝐹𝑛)𝑀(𝐺𝑛)) < 𝑅)) ∧ 𝑘𝐼) → ((𝐹𝑘) − (𝐺𝑘)) ∈ ℂ)
3837abscld 14117 . . . . . . . 8 ((((𝐼 ∈ (Fin ∖ {∅}) ∧ 𝐹𝑋𝐺𝑋) ∧ (𝑅 ∈ ℝ+ ∧ ∀𝑛𝐼 ((𝐹𝑛)𝑀(𝐺𝑛)) < 𝑅)) ∧ 𝑘𝐼) → (abs‘((𝐹𝑘) − (𝐺𝑘))) ∈ ℝ)
3921adantr 481 . . . . . . . 8 ((((𝐼 ∈ (Fin ∖ {∅}) ∧ 𝐹𝑋𝐺𝑋) ∧ (𝑅 ∈ ℝ+ ∧ ∀𝑛𝐼 ((𝐹𝑛)𝑀(𝐺𝑛)) < 𝑅)) ∧ 𝑘𝐼) → 𝑅 ∈ ℝ)
4037absge0d 14125 . . . . . . . 8 ((((𝐼 ∈ (Fin ∖ {∅}) ∧ 𝐹𝑋𝐺𝑋) ∧ (𝑅 ∈ ℝ+ ∧ ∀𝑛𝐼 ((𝐹𝑛)𝑀(𝐺𝑛)) < 𝑅)) ∧ 𝑘𝐼) → 0 ≤ (abs‘((𝐹𝑘) − (𝐺𝑘))))
4120rpge0d 11828 . . . . . . . . 9 (((𝐼 ∈ (Fin ∖ {∅}) ∧ 𝐹𝑋𝐺𝑋) ∧ (𝑅 ∈ ℝ+ ∧ ∀𝑛𝐼 ((𝐹𝑛)𝑀(𝐺𝑛)) < 𝑅)) → 0 ≤ 𝑅)
4241adantr 481 . . . . . . . 8 ((((𝐼 ∈ (Fin ∖ {∅}) ∧ 𝐹𝑋𝐺𝑋) ∧ (𝑅 ∈ ℝ+ ∧ ∀𝑛𝐼 ((𝐹𝑛)𝑀(𝐺𝑛)) < 𝑅)) ∧ 𝑘𝐼) → 0 ≤ 𝑅)
4338, 39, 40, 42lt2sqd 12991 . . . . . . 7 ((((𝐼 ∈ (Fin ∖ {∅}) ∧ 𝐹𝑋𝐺𝑋) ∧ (𝑅 ∈ ℝ+ ∧ ∀𝑛𝐼 ((𝐹𝑛)𝑀(𝐺𝑛)) < 𝑅)) ∧ 𝑘𝐼) → ((abs‘((𝐹𝑘) − (𝐺𝑘))) < 𝑅 ↔ ((abs‘((𝐹𝑘) − (𝐺𝑘)))↑2) < (𝑅↑2)))
4436, 43mpbid 222 . . . . . 6 ((((𝐼 ∈ (Fin ∖ {∅}) ∧ 𝐹𝑋𝐺𝑋) ∧ (𝑅 ∈ ℝ+ ∧ ∀𝑛𝐼 ((𝐹𝑛)𝑀(𝐺𝑛)) < 𝑅)) ∧ 𝑘𝐼) → ((abs‘((𝐹𝑘) − (𝐺𝑘)))↑2) < (𝑅↑2))
4525, 44eqbrtrrd 4642 . . . . 5 ((((𝐼 ∈ (Fin ∖ {∅}) ∧ 𝐹𝑋𝐺𝑋) ∧ (𝑅 ∈ ℝ+ ∧ ∀𝑛𝐼 ((𝐹𝑛)𝑀(𝐺𝑛)) < 𝑅)) ∧ 𝑘𝐼) → (((𝐹𝑘) − (𝐺𝑘))↑2) < (𝑅↑2))
462, 9, 19, 23, 45fsumlt 14470 . . . 4 (((𝐼 ∈ (Fin ∖ {∅}) ∧ 𝐹𝑋𝐺𝑋) ∧ (𝑅 ∈ ℝ+ ∧ ∀𝑛𝐼 ((𝐹𝑛)𝑀(𝐺𝑛)) < 𝑅)) → Σ𝑘𝐼 (((𝐹𝑘) − (𝐺𝑘))↑2) < Σ𝑘𝐼 (𝑅↑2))
472, 19fsumrecl 14406 . . . . 5 (((𝐼 ∈ (Fin ∖ {∅}) ∧ 𝐹𝑋𝐺𝑋) ∧ (𝑅 ∈ ℝ+ ∧ ∀𝑛𝐼 ((𝐹𝑛)𝑀(𝐺𝑛)) < 𝑅)) → Σ𝑘𝐼 (((𝐹𝑘) − (𝐺𝑘))↑2) ∈ ℝ)
4818sqge0d 12984 . . . . . 6 ((((𝐼 ∈ (Fin ∖ {∅}) ∧ 𝐹𝑋𝐺𝑋) ∧ (𝑅 ∈ ℝ+ ∧ ∀𝑛𝐼 ((𝐹𝑛)𝑀(𝐺𝑛)) < 𝑅)) ∧ 𝑘𝐼) → 0 ≤ (((𝐹𝑘) − (𝐺𝑘))↑2))
492, 19, 48fsumge0 14465 . . . . 5 (((𝐼 ∈ (Fin ∖ {∅}) ∧ 𝐹𝑋𝐺𝑋) ∧ (𝑅 ∈ ℝ+ ∧ ∀𝑛𝐼 ((𝐹𝑛)𝑀(𝐺𝑛)) < 𝑅)) → 0 ≤ Σ𝑘𝐼 (((𝐹𝑘) − (𝐺𝑘))↑2))
50 resqrtth 13938 . . . . 5 ((Σ𝑘𝐼 (((𝐹𝑘) − (𝐺𝑘))↑2) ∈ ℝ ∧ 0 ≤ Σ𝑘𝐼 (((𝐹𝑘) − (𝐺𝑘))↑2)) → ((√‘Σ𝑘𝐼 (((𝐹𝑘) − (𝐺𝑘))↑2))↑2) = Σ𝑘𝐼 (((𝐹𝑘) − (𝐺𝑘))↑2))
5147, 49, 50syl2anc 692 . . . 4 (((𝐼 ∈ (Fin ∖ {∅}) ∧ 𝐹𝑋𝐺𝑋) ∧ (𝑅 ∈ ℝ+ ∧ ∀𝑛𝐼 ((𝐹𝑛)𝑀(𝐺𝑛)) < 𝑅)) → ((√‘Σ𝑘𝐼 (((𝐹𝑘) − (𝐺𝑘))↑2))↑2) = Σ𝑘𝐼 (((𝐹𝑘) − (𝐺𝑘))↑2))
52 hashnncl 13105 . . . . . . . . . . . 12 (𝐼 ∈ Fin → ((#‘𝐼) ∈ ℕ ↔ 𝐼 ≠ ∅))
532, 52syl 17 . . . . . . . . . . 11 (((𝐼 ∈ (Fin ∖ {∅}) ∧ 𝐹𝑋𝐺𝑋) ∧ (𝑅 ∈ ℝ+ ∧ ∀𝑛𝐼 ((𝐹𝑛)𝑀(𝐺𝑛)) < 𝑅)) → ((#‘𝐼) ∈ ℕ ↔ 𝐼 ≠ ∅))
549, 53mpbird 247 . . . . . . . . . 10 (((𝐼 ∈ (Fin ∖ {∅}) ∧ 𝐹𝑋𝐺𝑋) ∧ (𝑅 ∈ ℝ+ ∧ ∀𝑛𝐼 ((𝐹𝑛)𝑀(𝐺𝑛)) < 𝑅)) → (#‘𝐼) ∈ ℕ)
5554nnrpd 11822 . . . . . . . . 9 (((𝐼 ∈ (Fin ∖ {∅}) ∧ 𝐹𝑋𝐺𝑋) ∧ (𝑅 ∈ ℝ+ ∧ ∀𝑛𝐼 ((𝐹𝑛)𝑀(𝐺𝑛)) < 𝑅)) → (#‘𝐼) ∈ ℝ+)
5655rpred 11824 . . . . . . . 8 (((𝐼 ∈ (Fin ∖ {∅}) ∧ 𝐹𝑋𝐺𝑋) ∧ (𝑅 ∈ ℝ+ ∧ ∀𝑛𝐼 ((𝐹𝑛)𝑀(𝐺𝑛)) < 𝑅)) → (#‘𝐼) ∈ ℝ)
5755rpge0d 11828 . . . . . . . 8 (((𝐼 ∈ (Fin ∖ {∅}) ∧ 𝐹𝑋𝐺𝑋) ∧ (𝑅 ∈ ℝ+ ∧ ∀𝑛𝐼 ((𝐹𝑛)𝑀(𝐺𝑛)) < 𝑅)) → 0 ≤ (#‘𝐼))
58 resqrtth 13938 . . . . . . . 8 (((#‘𝐼) ∈ ℝ ∧ 0 ≤ (#‘𝐼)) → ((√‘(#‘𝐼))↑2) = (#‘𝐼))
5956, 57, 58syl2anc 692 . . . . . . 7 (((𝐼 ∈ (Fin ∖ {∅}) ∧ 𝐹𝑋𝐺𝑋) ∧ (𝑅 ∈ ℝ+ ∧ ∀𝑛𝐼 ((𝐹𝑛)𝑀(𝐺𝑛)) < 𝑅)) → ((√‘(#‘𝐼))↑2) = (#‘𝐼))
6059oveq2d 6626 . . . . . 6 (((𝐼 ∈ (Fin ∖ {∅}) ∧ 𝐹𝑋𝐺𝑋) ∧ (𝑅 ∈ ℝ+ ∧ ∀𝑛𝐼 ((𝐹𝑛)𝑀(𝐺𝑛)) < 𝑅)) → ((𝑅↑2) · ((√‘(#‘𝐼))↑2)) = ((𝑅↑2) · (#‘𝐼)))
6122recnd 10020 . . . . . . 7 (((𝐼 ∈ (Fin ∖ {∅}) ∧ 𝐹𝑋𝐺𝑋) ∧ (𝑅 ∈ ℝ+ ∧ ∀𝑛𝐼 ((𝐹𝑛)𝑀(𝐺𝑛)) < 𝑅)) → (𝑅↑2) ∈ ℂ)
6255rpcnd 11826 . . . . . . 7 (((𝐼 ∈ (Fin ∖ {∅}) ∧ 𝐹𝑋𝐺𝑋) ∧ (𝑅 ∈ ℝ+ ∧ ∀𝑛𝐼 ((𝐹𝑛)𝑀(𝐺𝑛)) < 𝑅)) → (#‘𝐼) ∈ ℂ)
6361, 62mulcomd 10013 . . . . . 6 (((𝐼 ∈ (Fin ∖ {∅}) ∧ 𝐹𝑋𝐺𝑋) ∧ (𝑅 ∈ ℝ+ ∧ ∀𝑛𝐼 ((𝐹𝑛)𝑀(𝐺𝑛)) < 𝑅)) → ((𝑅↑2) · (#‘𝐼)) = ((#‘𝐼) · (𝑅↑2)))
6460, 63eqtrd 2655 . . . . 5 (((𝐼 ∈ (Fin ∖ {∅}) ∧ 𝐹𝑋𝐺𝑋) ∧ (𝑅 ∈ ℝ+ ∧ ∀𝑛𝐼 ((𝐹𝑛)𝑀(𝐺𝑛)) < 𝑅)) → ((𝑅↑2) · ((√‘(#‘𝐼))↑2)) = ((#‘𝐼) · (𝑅↑2)))
6520rpcnd 11826 . . . . . 6 (((𝐼 ∈ (Fin ∖ {∅}) ∧ 𝐹𝑋𝐺𝑋) ∧ (𝑅 ∈ ℝ+ ∧ ∀𝑛𝐼 ((𝐹𝑛)𝑀(𝐺𝑛)) < 𝑅)) → 𝑅 ∈ ℂ)
6655rpsqrtcld 14092 . . . . . . 7 (((𝐼 ∈ (Fin ∖ {∅}) ∧ 𝐹𝑋𝐺𝑋) ∧ (𝑅 ∈ ℝ+ ∧ ∀𝑛𝐼 ((𝐹𝑛)𝑀(𝐺𝑛)) < 𝑅)) → (√‘(#‘𝐼)) ∈ ℝ+)
6766rpcnd 11826 . . . . . 6 (((𝐼 ∈ (Fin ∖ {∅}) ∧ 𝐹𝑋𝐺𝑋) ∧ (𝑅 ∈ ℝ+ ∧ ∀𝑛𝐼 ((𝐹𝑛)𝑀(𝐺𝑛)) < 𝑅)) → (√‘(#‘𝐼)) ∈ ℂ)
6865, 67sqmuld 12968 . . . . 5 (((𝐼 ∈ (Fin ∖ {∅}) ∧ 𝐹𝑋𝐺𝑋) ∧ (𝑅 ∈ ℝ+ ∧ ∀𝑛𝐼 ((𝐹𝑛)𝑀(𝐺𝑛)) < 𝑅)) → ((𝑅 · (√‘(#‘𝐼)))↑2) = ((𝑅↑2) · ((√‘(#‘𝐼))↑2)))
69 fsumconst 14461 . . . . . 6 ((𝐼 ∈ Fin ∧ (𝑅↑2) ∈ ℂ) → Σ𝑘𝐼 (𝑅↑2) = ((#‘𝐼) · (𝑅↑2)))
702, 61, 69syl2anc 692 . . . . 5 (((𝐼 ∈ (Fin ∖ {∅}) ∧ 𝐹𝑋𝐺𝑋) ∧ (𝑅 ∈ ℝ+ ∧ ∀𝑛𝐼 ((𝐹𝑛)𝑀(𝐺𝑛)) < 𝑅)) → Σ𝑘𝐼 (𝑅↑2) = ((#‘𝐼) · (𝑅↑2)))
7164, 68, 703eqtr4d 2665 . . . 4 (((𝐼 ∈ (Fin ∖ {∅}) ∧ 𝐹𝑋𝐺𝑋) ∧ (𝑅 ∈ ℝ+ ∧ ∀𝑛𝐼 ((𝐹𝑛)𝑀(𝐺𝑛)) < 𝑅)) → ((𝑅 · (√‘(#‘𝐼)))↑2) = Σ𝑘𝐼 (𝑅↑2))
7246, 51, 713brtr4d 4650 . . 3 (((𝐼 ∈ (Fin ∖ {∅}) ∧ 𝐹𝑋𝐺𝑋) ∧ (𝑅 ∈ ℝ+ ∧ ∀𝑛𝐼 ((𝐹𝑛)𝑀(𝐺𝑛)) < 𝑅)) → ((√‘Σ𝑘𝐼 (((𝐹𝑘) − (𝐺𝑘))↑2))↑2) < ((𝑅 · (√‘(#‘𝐼)))↑2))
7347, 49resqrtcld 14098 . . . 4 (((𝐼 ∈ (Fin ∖ {∅}) ∧ 𝐹𝑋𝐺𝑋) ∧ (𝑅 ∈ ℝ+ ∧ ∀𝑛𝐼 ((𝐹𝑛)𝑀(𝐺𝑛)) < 𝑅)) → (√‘Σ𝑘𝐼 (((𝐹𝑘) − (𝐺𝑘))↑2)) ∈ ℝ)
7420, 66rpmulcld 11840 . . . . 5 (((𝐼 ∈ (Fin ∖ {∅}) ∧ 𝐹𝑋𝐺𝑋) ∧ (𝑅 ∈ ℝ+ ∧ ∀𝑛𝐼 ((𝐹𝑛)𝑀(𝐺𝑛)) < 𝑅)) → (𝑅 · (√‘(#‘𝐼))) ∈ ℝ+)
7574rpred 11824 . . . 4 (((𝐼 ∈ (Fin ∖ {∅}) ∧ 𝐹𝑋𝐺𝑋) ∧ (𝑅 ∈ ℝ+ ∧ ∀𝑛𝐼 ((𝐹𝑛)𝑀(𝐺𝑛)) < 𝑅)) → (𝑅 · (√‘(#‘𝐼))) ∈ ℝ)
7647, 49sqrtge0d 14101 . . . 4 (((𝐼 ∈ (Fin ∖ {∅}) ∧ 𝐹𝑋𝐺𝑋) ∧ (𝑅 ∈ ℝ+ ∧ ∀𝑛𝐼 ((𝐹𝑛)𝑀(𝐺𝑛)) < 𝑅)) → 0 ≤ (√‘Σ𝑘𝐼 (((𝐹𝑘) − (𝐺𝑘))↑2)))
7774rpge0d 11828 . . . 4 (((𝐼 ∈ (Fin ∖ {∅}) ∧ 𝐹𝑋𝐺𝑋) ∧ (𝑅 ∈ ℝ+ ∧ ∀𝑛𝐼 ((𝐹𝑛)𝑀(𝐺𝑛)) < 𝑅)) → 0 ≤ (𝑅 · (√‘(#‘𝐼))))
7873, 75, 76, 77lt2sqd 12991 . . 3 (((𝐼 ∈ (Fin ∖ {∅}) ∧ 𝐹𝑋𝐺𝑋) ∧ (𝑅 ∈ ℝ+ ∧ ∀𝑛𝐼 ((𝐹𝑛)𝑀(𝐺𝑛)) < 𝑅)) → ((√‘Σ𝑘𝐼 (((𝐹𝑘) − (𝐺𝑘))↑2)) < (𝑅 · (√‘(#‘𝐼))) ↔ ((√‘Σ𝑘𝐼 (((𝐹𝑘) − (𝐺𝑘))↑2))↑2) < ((𝑅 · (√‘(#‘𝐼)))↑2)))
7972, 78mpbird 247 . 2 (((𝐼 ∈ (Fin ∖ {∅}) ∧ 𝐹𝑋𝐺𝑋) ∧ (𝑅 ∈ ℝ+ ∧ ∀𝑛𝐼 ((𝐹𝑛)𝑀(𝐺𝑛)) < 𝑅)) → (√‘Σ𝑘𝐼 (((𝐹𝑘) − (𝐺𝑘))↑2)) < (𝑅 · (√‘(#‘𝐼))))
807, 79eqbrtrd 4640 1 (((𝐼 ∈ (Fin ∖ {∅}) ∧ 𝐹𝑋𝐺𝑋) ∧ (𝑅 ∈ ℝ+ ∧ ∀𝑛𝐼 ((𝐹𝑛)𝑀(𝐺𝑛)) < 𝑅)) → (𝐹(ℝn𝐼)𝐺) < (𝑅 · (√‘(#‘𝐼))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384  w3a 1036   = wceq 1480  wcel 1987  wne 2790  wral 2907  cdif 3556  c0 3896  {csn 4153   class class class wbr 4618   × cxp 5077  cres 5081  ccom 5083  wf 5848  cfv 5852  (class class class)co 6610  𝑚 cmap 7809  Fincfn 7907  cc 9886  cr 9887  0cc0 9888   · cmul 9893   < clt 10026  cle 10027  cmin 10218  cn 10972  2c2 11022  +crp 11784  cexp 12808  #chash 13065  csqrt 13915  abscabs 13916  Σcsu 14358  ncrrn 33291
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4736  ax-sep 4746  ax-nul 4754  ax-pow 4808  ax-pr 4872  ax-un 6909  ax-inf2 8490  ax-cnex 9944  ax-resscn 9945  ax-1cn 9946  ax-icn 9947  ax-addcl 9948  ax-addrcl 9949  ax-mulcl 9950  ax-mulrcl 9951  ax-mulcom 9952  ax-addass 9953  ax-mulass 9954  ax-distr 9955  ax-i2m1 9956  ax-1ne0 9957  ax-1rid 9958  ax-rnegex 9959  ax-rrecex 9960  ax-cnre 9961  ax-pre-lttri 9962  ax-pre-lttrn 9963  ax-pre-ltadd 9964  ax-pre-mulgt0 9965  ax-pre-sup 9966
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-fal 1486  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-reu 2914  df-rmo 2915  df-rab 2916  df-v 3191  df-sbc 3422  df-csb 3519  df-dif 3562  df-un 3564  df-in 3566  df-ss 3573  df-pss 3575  df-nul 3897  df-if 4064  df-pw 4137  df-sn 4154  df-pr 4156  df-tp 4158  df-op 4160  df-uni 4408  df-int 4446  df-iun 4492  df-br 4619  df-opab 4679  df-mpt 4680  df-tr 4718  df-eprel 4990  df-id 4994  df-po 5000  df-so 5001  df-fr 5038  df-se 5039  df-we 5040  df-xp 5085  df-rel 5086  df-cnv 5087  df-co 5088  df-dm 5089  df-rn 5090  df-res 5091  df-ima 5092  df-pred 5644  df-ord 5690  df-on 5691  df-lim 5692  df-suc 5693  df-iota 5815  df-fun 5854  df-fn 5855  df-f 5856  df-f1 5857  df-fo 5858  df-f1o 5859  df-fv 5860  df-isom 5861  df-riota 6571  df-ov 6613  df-oprab 6614  df-mpt2 6615  df-om 7020  df-1st 7120  df-2nd 7121  df-wrecs 7359  df-recs 7420  df-rdg 7458  df-1o 7512  df-oadd 7516  df-er 7694  df-map 7811  df-en 7908  df-dom 7909  df-sdom 7910  df-fin 7911  df-sup 8300  df-oi 8367  df-card 8717  df-pnf 10028  df-mnf 10029  df-xr 10030  df-ltxr 10031  df-le 10032  df-sub 10220  df-neg 10221  df-div 10637  df-nn 10973  df-2 11031  df-3 11032  df-n0 11245  df-z 11330  df-uz 11640  df-rp 11785  df-ico 12131  df-fz 12277  df-fzo 12415  df-seq 12750  df-exp 12809  df-hash 13066  df-cj 13781  df-re 13782  df-im 13783  df-sqrt 13917  df-abs 13918  df-clim 14161  df-sum 14359  df-rrn 33292
This theorem is referenced by:  rrncmslem  33298  rrnequiv  33301
  Copyright terms: Public domain W3C validator