Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rrnmet Structured version   Visualization version   GIF version

Theorem rrnmet 34988
Description: Euclidean space is a metric space. (Contributed by Jeff Madsen, 2-Sep-2009.) (Proof shortened by Mario Carneiro, 5-Jun-2014.)
Hypothesis
Ref Expression
rrnval.1 𝑋 = (ℝ ↑m 𝐼)
Assertion
Ref Expression
rrnmet (𝐼 ∈ Fin → (ℝn𝐼) ∈ (Met‘𝑋))

Proof of Theorem rrnmet
Dummy variables 𝑘 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpl 483 . . . . . . 7 ((𝐼 ∈ Fin ∧ (𝑥𝑋𝑦𝑋)) → 𝐼 ∈ Fin)
2 simprl 767 . . . . . . . . . . . 12 ((𝐼 ∈ Fin ∧ (𝑥𝑋𝑦𝑋)) → 𝑥𝑋)
3 rrnval.1 . . . . . . . . . . . 12 𝑋 = (ℝ ↑m 𝐼)
42, 3eleqtrdi 2920 . . . . . . . . . . 11 ((𝐼 ∈ Fin ∧ (𝑥𝑋𝑦𝑋)) → 𝑥 ∈ (ℝ ↑m 𝐼))
5 elmapi 8417 . . . . . . . . . . 11 (𝑥 ∈ (ℝ ↑m 𝐼) → 𝑥:𝐼⟶ℝ)
64, 5syl 17 . . . . . . . . . 10 ((𝐼 ∈ Fin ∧ (𝑥𝑋𝑦𝑋)) → 𝑥:𝐼⟶ℝ)
76ffvelrnda 6843 . . . . . . . . 9 (((𝐼 ∈ Fin ∧ (𝑥𝑋𝑦𝑋)) ∧ 𝑘𝐼) → (𝑥𝑘) ∈ ℝ)
8 simprr 769 . . . . . . . . . . . 12 ((𝐼 ∈ Fin ∧ (𝑥𝑋𝑦𝑋)) → 𝑦𝑋)
98, 3eleqtrdi 2920 . . . . . . . . . . 11 ((𝐼 ∈ Fin ∧ (𝑥𝑋𝑦𝑋)) → 𝑦 ∈ (ℝ ↑m 𝐼))
10 elmapi 8417 . . . . . . . . . . 11 (𝑦 ∈ (ℝ ↑m 𝐼) → 𝑦:𝐼⟶ℝ)
119, 10syl 17 . . . . . . . . . 10 ((𝐼 ∈ Fin ∧ (𝑥𝑋𝑦𝑋)) → 𝑦:𝐼⟶ℝ)
1211ffvelrnda 6843 . . . . . . . . 9 (((𝐼 ∈ Fin ∧ (𝑥𝑋𝑦𝑋)) ∧ 𝑘𝐼) → (𝑦𝑘) ∈ ℝ)
137, 12resubcld 11056 . . . . . . . 8 (((𝐼 ∈ Fin ∧ (𝑥𝑋𝑦𝑋)) ∧ 𝑘𝐼) → ((𝑥𝑘) − (𝑦𝑘)) ∈ ℝ)
1413resqcld 13599 . . . . . . 7 (((𝐼 ∈ Fin ∧ (𝑥𝑋𝑦𝑋)) ∧ 𝑘𝐼) → (((𝑥𝑘) − (𝑦𝑘))↑2) ∈ ℝ)
151, 14fsumrecl 15079 . . . . . 6 ((𝐼 ∈ Fin ∧ (𝑥𝑋𝑦𝑋)) → Σ𝑘𝐼 (((𝑥𝑘) − (𝑦𝑘))↑2) ∈ ℝ)
1613sqge0d 13600 . . . . . . 7 (((𝐼 ∈ Fin ∧ (𝑥𝑋𝑦𝑋)) ∧ 𝑘𝐼) → 0 ≤ (((𝑥𝑘) − (𝑦𝑘))↑2))
171, 14, 16fsumge0 15138 . . . . . 6 ((𝐼 ∈ Fin ∧ (𝑥𝑋𝑦𝑋)) → 0 ≤ Σ𝑘𝐼 (((𝑥𝑘) − (𝑦𝑘))↑2))
1815, 17resqrtcld 14765 . . . . 5 ((𝐼 ∈ Fin ∧ (𝑥𝑋𝑦𝑋)) → (√‘Σ𝑘𝐼 (((𝑥𝑘) − (𝑦𝑘))↑2)) ∈ ℝ)
1918ralrimivva 3188 . . . 4 (𝐼 ∈ Fin → ∀𝑥𝑋𝑦𝑋 (√‘Σ𝑘𝐼 (((𝑥𝑘) − (𝑦𝑘))↑2)) ∈ ℝ)
20 eqid 2818 . . . . 5 (𝑥𝑋, 𝑦𝑋 ↦ (√‘Σ𝑘𝐼 (((𝑥𝑘) − (𝑦𝑘))↑2))) = (𝑥𝑋, 𝑦𝑋 ↦ (√‘Σ𝑘𝐼 (((𝑥𝑘) − (𝑦𝑘))↑2)))
2120fmpo 7755 . . . 4 (∀𝑥𝑋𝑦𝑋 (√‘Σ𝑘𝐼 (((𝑥𝑘) − (𝑦𝑘))↑2)) ∈ ℝ ↔ (𝑥𝑋, 𝑦𝑋 ↦ (√‘Σ𝑘𝐼 (((𝑥𝑘) − (𝑦𝑘))↑2))):(𝑋 × 𝑋)⟶ℝ)
2219, 21sylib 219 . . 3 (𝐼 ∈ Fin → (𝑥𝑋, 𝑦𝑋 ↦ (√‘Σ𝑘𝐼 (((𝑥𝑘) − (𝑦𝑘))↑2))):(𝑋 × 𝑋)⟶ℝ)
233rrnval 34986 . . . 4 (𝐼 ∈ Fin → (ℝn𝐼) = (𝑥𝑋, 𝑦𝑋 ↦ (√‘Σ𝑘𝐼 (((𝑥𝑘) − (𝑦𝑘))↑2))))
2423feq1d 6492 . . 3 (𝐼 ∈ Fin → ((ℝn𝐼):(𝑋 × 𝑋)⟶ℝ ↔ (𝑥𝑋, 𝑦𝑋 ↦ (√‘Σ𝑘𝐼 (((𝑥𝑘) − (𝑦𝑘))↑2))):(𝑋 × 𝑋)⟶ℝ))
2522, 24mpbird 258 . 2 (𝐼 ∈ Fin → (ℝn𝐼):(𝑋 × 𝑋)⟶ℝ)
26 sqrt00 14611 . . . . . . . 8 ((Σ𝑘𝐼 (((𝑥𝑘) − (𝑦𝑘))↑2) ∈ ℝ ∧ 0 ≤ Σ𝑘𝐼 (((𝑥𝑘) − (𝑦𝑘))↑2)) → ((√‘Σ𝑘𝐼 (((𝑥𝑘) − (𝑦𝑘))↑2)) = 0 ↔ Σ𝑘𝐼 (((𝑥𝑘) − (𝑦𝑘))↑2) = 0))
2715, 17, 26syl2anc 584 . . . . . . 7 ((𝐼 ∈ Fin ∧ (𝑥𝑋𝑦𝑋)) → ((√‘Σ𝑘𝐼 (((𝑥𝑘) − (𝑦𝑘))↑2)) = 0 ↔ Σ𝑘𝐼 (((𝑥𝑘) − (𝑦𝑘))↑2) = 0))
281, 14, 16fsum00 15141 . . . . . . 7 ((𝐼 ∈ Fin ∧ (𝑥𝑋𝑦𝑋)) → (Σ𝑘𝐼 (((𝑥𝑘) − (𝑦𝑘))↑2) = 0 ↔ ∀𝑘𝐼 (((𝑥𝑘) − (𝑦𝑘))↑2) = 0))
2927, 28bitrd 280 . . . . . 6 ((𝐼 ∈ Fin ∧ (𝑥𝑋𝑦𝑋)) → ((√‘Σ𝑘𝐼 (((𝑥𝑘) − (𝑦𝑘))↑2)) = 0 ↔ ∀𝑘𝐼 (((𝑥𝑘) − (𝑦𝑘))↑2) = 0))
3013recnd 10657 . . . . . . . . 9 (((𝐼 ∈ Fin ∧ (𝑥𝑋𝑦𝑋)) ∧ 𝑘𝐼) → ((𝑥𝑘) − (𝑦𝑘)) ∈ ℂ)
31 sqeq0 13474 . . . . . . . . 9 (((𝑥𝑘) − (𝑦𝑘)) ∈ ℂ → ((((𝑥𝑘) − (𝑦𝑘))↑2) = 0 ↔ ((𝑥𝑘) − (𝑦𝑘)) = 0))
3230, 31syl 17 . . . . . . . 8 (((𝐼 ∈ Fin ∧ (𝑥𝑋𝑦𝑋)) ∧ 𝑘𝐼) → ((((𝑥𝑘) − (𝑦𝑘))↑2) = 0 ↔ ((𝑥𝑘) − (𝑦𝑘)) = 0))
337recnd 10657 . . . . . . . . 9 (((𝐼 ∈ Fin ∧ (𝑥𝑋𝑦𝑋)) ∧ 𝑘𝐼) → (𝑥𝑘) ∈ ℂ)
3412recnd 10657 . . . . . . . . 9 (((𝐼 ∈ Fin ∧ (𝑥𝑋𝑦𝑋)) ∧ 𝑘𝐼) → (𝑦𝑘) ∈ ℂ)
3533, 34subeq0ad 10995 . . . . . . . 8 (((𝐼 ∈ Fin ∧ (𝑥𝑋𝑦𝑋)) ∧ 𝑘𝐼) → (((𝑥𝑘) − (𝑦𝑘)) = 0 ↔ (𝑥𝑘) = (𝑦𝑘)))
3632, 35bitrd 280 . . . . . . 7 (((𝐼 ∈ Fin ∧ (𝑥𝑋𝑦𝑋)) ∧ 𝑘𝐼) → ((((𝑥𝑘) − (𝑦𝑘))↑2) = 0 ↔ (𝑥𝑘) = (𝑦𝑘)))
3736ralbidva 3193 . . . . . 6 ((𝐼 ∈ Fin ∧ (𝑥𝑋𝑦𝑋)) → (∀𝑘𝐼 (((𝑥𝑘) − (𝑦𝑘))↑2) = 0 ↔ ∀𝑘𝐼 (𝑥𝑘) = (𝑦𝑘)))
3829, 37bitrd 280 . . . . 5 ((𝐼 ∈ Fin ∧ (𝑥𝑋𝑦𝑋)) → ((√‘Σ𝑘𝐼 (((𝑥𝑘) − (𝑦𝑘))↑2)) = 0 ↔ ∀𝑘𝐼 (𝑥𝑘) = (𝑦𝑘)))
393rrnmval 34987 . . . . . . 7 ((𝐼 ∈ Fin ∧ 𝑥𝑋𝑦𝑋) → (𝑥(ℝn𝐼)𝑦) = (√‘Σ𝑘𝐼 (((𝑥𝑘) − (𝑦𝑘))↑2)))
40393expb 1112 . . . . . 6 ((𝐼 ∈ Fin ∧ (𝑥𝑋𝑦𝑋)) → (𝑥(ℝn𝐼)𝑦) = (√‘Σ𝑘𝐼 (((𝑥𝑘) − (𝑦𝑘))↑2)))
4140eqeq1d 2820 . . . . 5 ((𝐼 ∈ Fin ∧ (𝑥𝑋𝑦𝑋)) → ((𝑥(ℝn𝐼)𝑦) = 0 ↔ (√‘Σ𝑘𝐼 (((𝑥𝑘) − (𝑦𝑘))↑2)) = 0))
426ffnd 6508 . . . . . 6 ((𝐼 ∈ Fin ∧ (𝑥𝑋𝑦𝑋)) → 𝑥 Fn 𝐼)
4311ffnd 6508 . . . . . 6 ((𝐼 ∈ Fin ∧ (𝑥𝑋𝑦𝑋)) → 𝑦 Fn 𝐼)
44 eqfnfv 6794 . . . . . 6 ((𝑥 Fn 𝐼𝑦 Fn 𝐼) → (𝑥 = 𝑦 ↔ ∀𝑘𝐼 (𝑥𝑘) = (𝑦𝑘)))
4542, 43, 44syl2anc 584 . . . . 5 ((𝐼 ∈ Fin ∧ (𝑥𝑋𝑦𝑋)) → (𝑥 = 𝑦 ↔ ∀𝑘𝐼 (𝑥𝑘) = (𝑦𝑘)))
4638, 41, 453bitr4d 312 . . . 4 ((𝐼 ∈ Fin ∧ (𝑥𝑋𝑦𝑋)) → ((𝑥(ℝn𝐼)𝑦) = 0 ↔ 𝑥 = 𝑦))
47 simpll 763 . . . . . . . 8 (((𝐼 ∈ Fin ∧ (𝑥𝑋𝑦𝑋)) ∧ 𝑧𝑋) → 𝐼 ∈ Fin)
487adantlr 711 . . . . . . . . 9 ((((𝐼 ∈ Fin ∧ (𝑥𝑋𝑦𝑋)) ∧ 𝑧𝑋) ∧ 𝑘𝐼) → (𝑥𝑘) ∈ ℝ)
49 simpr 485 . . . . . . . . . . . 12 (((𝐼 ∈ Fin ∧ (𝑥𝑋𝑦𝑋)) ∧ 𝑧𝑋) → 𝑧𝑋)
5049, 3eleqtrdi 2920 . . . . . . . . . . 11 (((𝐼 ∈ Fin ∧ (𝑥𝑋𝑦𝑋)) ∧ 𝑧𝑋) → 𝑧 ∈ (ℝ ↑m 𝐼))
51 elmapi 8417 . . . . . . . . . . 11 (𝑧 ∈ (ℝ ↑m 𝐼) → 𝑧:𝐼⟶ℝ)
5250, 51syl 17 . . . . . . . . . 10 (((𝐼 ∈ Fin ∧ (𝑥𝑋𝑦𝑋)) ∧ 𝑧𝑋) → 𝑧:𝐼⟶ℝ)
5352ffvelrnda 6843 . . . . . . . . 9 ((((𝐼 ∈ Fin ∧ (𝑥𝑋𝑦𝑋)) ∧ 𝑧𝑋) ∧ 𝑘𝐼) → (𝑧𝑘) ∈ ℝ)
5448, 53resubcld 11056 . . . . . . . 8 ((((𝐼 ∈ Fin ∧ (𝑥𝑋𝑦𝑋)) ∧ 𝑧𝑋) ∧ 𝑘𝐼) → ((𝑥𝑘) − (𝑧𝑘)) ∈ ℝ)
5512adantlr 711 . . . . . . . . 9 ((((𝐼 ∈ Fin ∧ (𝑥𝑋𝑦𝑋)) ∧ 𝑧𝑋) ∧ 𝑘𝐼) → (𝑦𝑘) ∈ ℝ)
5653, 55resubcld 11056 . . . . . . . 8 ((((𝐼 ∈ Fin ∧ (𝑥𝑋𝑦𝑋)) ∧ 𝑧𝑋) ∧ 𝑘𝐼) → ((𝑧𝑘) − (𝑦𝑘)) ∈ ℝ)
5747, 54, 56trirn 23930 . . . . . . 7 (((𝐼 ∈ Fin ∧ (𝑥𝑋𝑦𝑋)) ∧ 𝑧𝑋) → (√‘Σ𝑘𝐼 ((((𝑥𝑘) − (𝑧𝑘)) + ((𝑧𝑘) − (𝑦𝑘)))↑2)) ≤ ((√‘Σ𝑘𝐼 (((𝑥𝑘) − (𝑧𝑘))↑2)) + (√‘Σ𝑘𝐼 (((𝑧𝑘) − (𝑦𝑘))↑2))))
5833adantlr 711 . . . . . . . . . . 11 ((((𝐼 ∈ Fin ∧ (𝑥𝑋𝑦𝑋)) ∧ 𝑧𝑋) ∧ 𝑘𝐼) → (𝑥𝑘) ∈ ℂ)
5953recnd 10657 . . . . . . . . . . 11 ((((𝐼 ∈ Fin ∧ (𝑥𝑋𝑦𝑋)) ∧ 𝑧𝑋) ∧ 𝑘𝐼) → (𝑧𝑘) ∈ ℂ)
6034adantlr 711 . . . . . . . . . . 11 ((((𝐼 ∈ Fin ∧ (𝑥𝑋𝑦𝑋)) ∧ 𝑧𝑋) ∧ 𝑘𝐼) → (𝑦𝑘) ∈ ℂ)
6158, 59, 60npncand 11009 . . . . . . . . . 10 ((((𝐼 ∈ Fin ∧ (𝑥𝑋𝑦𝑋)) ∧ 𝑧𝑋) ∧ 𝑘𝐼) → (((𝑥𝑘) − (𝑧𝑘)) + ((𝑧𝑘) − (𝑦𝑘))) = ((𝑥𝑘) − (𝑦𝑘)))
6261oveq1d 7160 . . . . . . . . 9 ((((𝐼 ∈ Fin ∧ (𝑥𝑋𝑦𝑋)) ∧ 𝑧𝑋) ∧ 𝑘𝐼) → ((((𝑥𝑘) − (𝑧𝑘)) + ((𝑧𝑘) − (𝑦𝑘)))↑2) = (((𝑥𝑘) − (𝑦𝑘))↑2))
6362sumeq2dv 15048 . . . . . . . 8 (((𝐼 ∈ Fin ∧ (𝑥𝑋𝑦𝑋)) ∧ 𝑧𝑋) → Σ𝑘𝐼 ((((𝑥𝑘) − (𝑧𝑘)) + ((𝑧𝑘) − (𝑦𝑘)))↑2) = Σ𝑘𝐼 (((𝑥𝑘) − (𝑦𝑘))↑2))
6463fveq2d 6667 . . . . . . 7 (((𝐼 ∈ Fin ∧ (𝑥𝑋𝑦𝑋)) ∧ 𝑧𝑋) → (√‘Σ𝑘𝐼 ((((𝑥𝑘) − (𝑧𝑘)) + ((𝑧𝑘) − (𝑦𝑘)))↑2)) = (√‘Σ𝑘𝐼 (((𝑥𝑘) − (𝑦𝑘))↑2)))
65 sqsubswap 13471 . . . . . . . . . . 11 (((𝑥𝑘) ∈ ℂ ∧ (𝑧𝑘) ∈ ℂ) → (((𝑥𝑘) − (𝑧𝑘))↑2) = (((𝑧𝑘) − (𝑥𝑘))↑2))
6658, 59, 65syl2anc 584 . . . . . . . . . 10 ((((𝐼 ∈ Fin ∧ (𝑥𝑋𝑦𝑋)) ∧ 𝑧𝑋) ∧ 𝑘𝐼) → (((𝑥𝑘) − (𝑧𝑘))↑2) = (((𝑧𝑘) − (𝑥𝑘))↑2))
6766sumeq2dv 15048 . . . . . . . . 9 (((𝐼 ∈ Fin ∧ (𝑥𝑋𝑦𝑋)) ∧ 𝑧𝑋) → Σ𝑘𝐼 (((𝑥𝑘) − (𝑧𝑘))↑2) = Σ𝑘𝐼 (((𝑧𝑘) − (𝑥𝑘))↑2))
6867fveq2d 6667 . . . . . . . 8 (((𝐼 ∈ Fin ∧ (𝑥𝑋𝑦𝑋)) ∧ 𝑧𝑋) → (√‘Σ𝑘𝐼 (((𝑥𝑘) − (𝑧𝑘))↑2)) = (√‘Σ𝑘𝐼 (((𝑧𝑘) − (𝑥𝑘))↑2)))
6968oveq1d 7160 . . . . . . 7 (((𝐼 ∈ Fin ∧ (𝑥𝑋𝑦𝑋)) ∧ 𝑧𝑋) → ((√‘Σ𝑘𝐼 (((𝑥𝑘) − (𝑧𝑘))↑2)) + (√‘Σ𝑘𝐼 (((𝑧𝑘) − (𝑦𝑘))↑2))) = ((√‘Σ𝑘𝐼 (((𝑧𝑘) − (𝑥𝑘))↑2)) + (√‘Σ𝑘𝐼 (((𝑧𝑘) − (𝑦𝑘))↑2))))
7057, 64, 693brtr3d 5088 . . . . . 6 (((𝐼 ∈ Fin ∧ (𝑥𝑋𝑦𝑋)) ∧ 𝑧𝑋) → (√‘Σ𝑘𝐼 (((𝑥𝑘) − (𝑦𝑘))↑2)) ≤ ((√‘Σ𝑘𝐼 (((𝑧𝑘) − (𝑥𝑘))↑2)) + (√‘Σ𝑘𝐼 (((𝑧𝑘) − (𝑦𝑘))↑2))))
7140adantr 481 . . . . . 6 (((𝐼 ∈ Fin ∧ (𝑥𝑋𝑦𝑋)) ∧ 𝑧𝑋) → (𝑥(ℝn𝐼)𝑦) = (√‘Σ𝑘𝐼 (((𝑥𝑘) − (𝑦𝑘))↑2)))
723rrnmval 34987 . . . . . . . . . 10 ((𝐼 ∈ Fin ∧ 𝑧𝑋𝑥𝑋) → (𝑧(ℝn𝐼)𝑥) = (√‘Σ𝑘𝐼 (((𝑧𝑘) − (𝑥𝑘))↑2)))
73723adant3r 1173 . . . . . . . . 9 ((𝐼 ∈ Fin ∧ 𝑧𝑋 ∧ (𝑥𝑋𝑦𝑋)) → (𝑧(ℝn𝐼)𝑥) = (√‘Σ𝑘𝐼 (((𝑧𝑘) − (𝑥𝑘))↑2)))
743rrnmval 34987 . . . . . . . . . 10 ((𝐼 ∈ Fin ∧ 𝑧𝑋𝑦𝑋) → (𝑧(ℝn𝐼)𝑦) = (√‘Σ𝑘𝐼 (((𝑧𝑘) − (𝑦𝑘))↑2)))
75743adant3l 1172 . . . . . . . . 9 ((𝐼 ∈ Fin ∧ 𝑧𝑋 ∧ (𝑥𝑋𝑦𝑋)) → (𝑧(ℝn𝐼)𝑦) = (√‘Σ𝑘𝐼 (((𝑧𝑘) − (𝑦𝑘))↑2)))
7673, 75oveq12d 7163 . . . . . . . 8 ((𝐼 ∈ Fin ∧ 𝑧𝑋 ∧ (𝑥𝑋𝑦𝑋)) → ((𝑧(ℝn𝐼)𝑥) + (𝑧(ℝn𝐼)𝑦)) = ((√‘Σ𝑘𝐼 (((𝑧𝑘) − (𝑥𝑘))↑2)) + (√‘Σ𝑘𝐼 (((𝑧𝑘) − (𝑦𝑘))↑2))))
77763expa 1110 . . . . . . 7 (((𝐼 ∈ Fin ∧ 𝑧𝑋) ∧ (𝑥𝑋𝑦𝑋)) → ((𝑧(ℝn𝐼)𝑥) + (𝑧(ℝn𝐼)𝑦)) = ((√‘Σ𝑘𝐼 (((𝑧𝑘) − (𝑥𝑘))↑2)) + (√‘Σ𝑘𝐼 (((𝑧𝑘) − (𝑦𝑘))↑2))))
7877an32s 648 . . . . . 6 (((𝐼 ∈ Fin ∧ (𝑥𝑋𝑦𝑋)) ∧ 𝑧𝑋) → ((𝑧(ℝn𝐼)𝑥) + (𝑧(ℝn𝐼)𝑦)) = ((√‘Σ𝑘𝐼 (((𝑧𝑘) − (𝑥𝑘))↑2)) + (√‘Σ𝑘𝐼 (((𝑧𝑘) − (𝑦𝑘))↑2))))
7970, 71, 783brtr4d 5089 . . . . 5 (((𝐼 ∈ Fin ∧ (𝑥𝑋𝑦𝑋)) ∧ 𝑧𝑋) → (𝑥(ℝn𝐼)𝑦) ≤ ((𝑧(ℝn𝐼)𝑥) + (𝑧(ℝn𝐼)𝑦)))
8079ralrimiva 3179 . . . 4 ((𝐼 ∈ Fin ∧ (𝑥𝑋𝑦𝑋)) → ∀𝑧𝑋 (𝑥(ℝn𝐼)𝑦) ≤ ((𝑧(ℝn𝐼)𝑥) + (𝑧(ℝn𝐼)𝑦)))
8146, 80jca 512 . . 3 ((𝐼 ∈ Fin ∧ (𝑥𝑋𝑦𝑋)) → (((𝑥(ℝn𝐼)𝑦) = 0 ↔ 𝑥 = 𝑦) ∧ ∀𝑧𝑋 (𝑥(ℝn𝐼)𝑦) ≤ ((𝑧(ℝn𝐼)𝑥) + (𝑧(ℝn𝐼)𝑦))))
8281ralrimivva 3188 . 2 (𝐼 ∈ Fin → ∀𝑥𝑋𝑦𝑋 (((𝑥(ℝn𝐼)𝑦) = 0 ↔ 𝑥 = 𝑦) ∧ ∀𝑧𝑋 (𝑥(ℝn𝐼)𝑦) ≤ ((𝑧(ℝn𝐼)𝑥) + (𝑧(ℝn𝐼)𝑦))))
83 ovex 7178 . . . 4 (ℝ ↑m 𝐼) ∈ V
843, 83eqeltri 2906 . . 3 𝑋 ∈ V
85 ismet 22860 . . 3 (𝑋 ∈ V → ((ℝn𝐼) ∈ (Met‘𝑋) ↔ ((ℝn𝐼):(𝑋 × 𝑋)⟶ℝ ∧ ∀𝑥𝑋𝑦𝑋 (((𝑥(ℝn𝐼)𝑦) = 0 ↔ 𝑥 = 𝑦) ∧ ∀𝑧𝑋 (𝑥(ℝn𝐼)𝑦) ≤ ((𝑧(ℝn𝐼)𝑥) + (𝑧(ℝn𝐼)𝑦))))))
8684, 85ax-mp 5 . 2 ((ℝn𝐼) ∈ (Met‘𝑋) ↔ ((ℝn𝐼):(𝑋 × 𝑋)⟶ℝ ∧ ∀𝑥𝑋𝑦𝑋 (((𝑥(ℝn𝐼)𝑦) = 0 ↔ 𝑥 = 𝑦) ∧ ∀𝑧𝑋 (𝑥(ℝn𝐼)𝑦) ≤ ((𝑧(ℝn𝐼)𝑥) + (𝑧(ℝn𝐼)𝑦)))))
8725, 82, 86sylanbrc 583 1 (𝐼 ∈ Fin → (ℝn𝐼) ∈ (Met‘𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 207  wa 396  w3a 1079   = wceq 1528  wcel 2105  wral 3135  Vcvv 3492   class class class wbr 5057   × cxp 5546   Fn wfn 6343  wf 6344  cfv 6348  (class class class)co 7145  cmpo 7147  m cmap 8395  Fincfn 8497  cc 10523  cr 10524  0cc0 10525   + caddc 10528  cle 10664  cmin 10858  2c2 11680  cexp 13417  csqrt 14580  Σcsu 15030  Metcmet 20459  ncrrn 34984
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1787  ax-4 1801  ax-5 1902  ax-6 1961  ax-7 2006  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2151  ax-12 2167  ax-ext 2790  ax-rep 5181  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7450  ax-inf2 9092  ax-cnex 10581  ax-resscn 10582  ax-1cn 10583  ax-icn 10584  ax-addcl 10585  ax-addrcl 10586  ax-mulcl 10587  ax-mulrcl 10588  ax-mulcom 10589  ax-addass 10590  ax-mulass 10591  ax-distr 10592  ax-i2m1 10593  ax-1ne0 10594  ax-1rid 10595  ax-rnegex 10596  ax-rrecex 10597  ax-cnre 10598  ax-pre-lttri 10599  ax-pre-lttrn 10600  ax-pre-ltadd 10601  ax-pre-mulgt0 10602  ax-pre-sup 10603
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 842  df-3or 1080  df-3an 1081  df-tru 1531  df-fal 1541  df-ex 1772  df-nf 1776  df-sb 2061  df-mo 2615  df-eu 2647  df-clab 2797  df-cleq 2811  df-clel 2890  df-nfc 2960  df-ne 3014  df-nel 3121  df-ral 3140  df-rex 3141  df-reu 3142  df-rmo 3143  df-rab 3144  df-v 3494  df-sbc 3770  df-csb 3881  df-dif 3936  df-un 3938  df-in 3940  df-ss 3949  df-pss 3951  df-nul 4289  df-if 4464  df-pw 4537  df-sn 4558  df-pr 4560  df-tp 4562  df-op 4564  df-uni 4831  df-int 4868  df-iun 4912  df-br 5058  df-opab 5120  df-mpt 5138  df-tr 5164  df-id 5453  df-eprel 5458  df-po 5467  df-so 5468  df-fr 5507  df-se 5508  df-we 5509  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-pred 6141  df-ord 6187  df-on 6188  df-lim 6189  df-suc 6190  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-isom 6357  df-riota 7103  df-ov 7148  df-oprab 7149  df-mpo 7150  df-om 7570  df-1st 7678  df-2nd 7679  df-wrecs 7936  df-recs 7997  df-rdg 8035  df-1o 8091  df-oadd 8095  df-er 8278  df-map 8397  df-en 8498  df-dom 8499  df-sdom 8500  df-fin 8501  df-sup 8894  df-oi 8962  df-card 9356  df-pnf 10665  df-mnf 10666  df-xr 10667  df-ltxr 10668  df-le 10669  df-sub 10860  df-neg 10861  df-div 11286  df-nn 11627  df-2 11688  df-3 11689  df-4 11690  df-n0 11886  df-z 11970  df-uz 12232  df-rp 12378  df-ico 12732  df-fz 12881  df-fzo 13022  df-seq 13358  df-exp 13418  df-hash 13679  df-cj 14446  df-re 14447  df-im 14448  df-sqrt 14582  df-abs 14583  df-clim 14833  df-sum 15031  df-met 20467  df-rrn 34985
This theorem is referenced by:  rrncmslem  34991  rrncms  34992  rrnequiv  34994  rrntotbnd  34995  rrnheibor  34996  ismrer1  34997  reheibor  34998
  Copyright terms: Public domain W3C validator