Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rrnmet Structured version   Visualization version   GIF version

Theorem rrnmet 33758
Description: Euclidean space is a metric space. (Contributed by Jeff Madsen, 2-Sep-2009.) (Proof shortened by Mario Carneiro, 5-Jun-2014.)
Hypothesis
Ref Expression
rrnval.1 𝑋 = (ℝ ↑𝑚 𝐼)
Assertion
Ref Expression
rrnmet (𝐼 ∈ Fin → (ℝn𝐼) ∈ (Met‘𝑋))

Proof of Theorem rrnmet
Dummy variables 𝑘 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpl 472 . . . . . . 7 ((𝐼 ∈ Fin ∧ (𝑥𝑋𝑦𝑋)) → 𝐼 ∈ Fin)
2 simprl 809 . . . . . . . . . . . 12 ((𝐼 ∈ Fin ∧ (𝑥𝑋𝑦𝑋)) → 𝑥𝑋)
3 rrnval.1 . . . . . . . . . . . 12 𝑋 = (ℝ ↑𝑚 𝐼)
42, 3syl6eleq 2740 . . . . . . . . . . 11 ((𝐼 ∈ Fin ∧ (𝑥𝑋𝑦𝑋)) → 𝑥 ∈ (ℝ ↑𝑚 𝐼))
5 elmapi 7921 . . . . . . . . . . 11 (𝑥 ∈ (ℝ ↑𝑚 𝐼) → 𝑥:𝐼⟶ℝ)
64, 5syl 17 . . . . . . . . . 10 ((𝐼 ∈ Fin ∧ (𝑥𝑋𝑦𝑋)) → 𝑥:𝐼⟶ℝ)
76ffvelrnda 6399 . . . . . . . . 9 (((𝐼 ∈ Fin ∧ (𝑥𝑋𝑦𝑋)) ∧ 𝑘𝐼) → (𝑥𝑘) ∈ ℝ)
8 simprr 811 . . . . . . . . . . . 12 ((𝐼 ∈ Fin ∧ (𝑥𝑋𝑦𝑋)) → 𝑦𝑋)
98, 3syl6eleq 2740 . . . . . . . . . . 11 ((𝐼 ∈ Fin ∧ (𝑥𝑋𝑦𝑋)) → 𝑦 ∈ (ℝ ↑𝑚 𝐼))
10 elmapi 7921 . . . . . . . . . . 11 (𝑦 ∈ (ℝ ↑𝑚 𝐼) → 𝑦:𝐼⟶ℝ)
119, 10syl 17 . . . . . . . . . 10 ((𝐼 ∈ Fin ∧ (𝑥𝑋𝑦𝑋)) → 𝑦:𝐼⟶ℝ)
1211ffvelrnda 6399 . . . . . . . . 9 (((𝐼 ∈ Fin ∧ (𝑥𝑋𝑦𝑋)) ∧ 𝑘𝐼) → (𝑦𝑘) ∈ ℝ)
137, 12resubcld 10496 . . . . . . . 8 (((𝐼 ∈ Fin ∧ (𝑥𝑋𝑦𝑋)) ∧ 𝑘𝐼) → ((𝑥𝑘) − (𝑦𝑘)) ∈ ℝ)
1413resqcld 13075 . . . . . . 7 (((𝐼 ∈ Fin ∧ (𝑥𝑋𝑦𝑋)) ∧ 𝑘𝐼) → (((𝑥𝑘) − (𝑦𝑘))↑2) ∈ ℝ)
151, 14fsumrecl 14509 . . . . . 6 ((𝐼 ∈ Fin ∧ (𝑥𝑋𝑦𝑋)) → Σ𝑘𝐼 (((𝑥𝑘) − (𝑦𝑘))↑2) ∈ ℝ)
1613sqge0d 13076 . . . . . . 7 (((𝐼 ∈ Fin ∧ (𝑥𝑋𝑦𝑋)) ∧ 𝑘𝐼) → 0 ≤ (((𝑥𝑘) − (𝑦𝑘))↑2))
171, 14, 16fsumge0 14571 . . . . . 6 ((𝐼 ∈ Fin ∧ (𝑥𝑋𝑦𝑋)) → 0 ≤ Σ𝑘𝐼 (((𝑥𝑘) − (𝑦𝑘))↑2))
1815, 17resqrtcld 14200 . . . . 5 ((𝐼 ∈ Fin ∧ (𝑥𝑋𝑦𝑋)) → (√‘Σ𝑘𝐼 (((𝑥𝑘) − (𝑦𝑘))↑2)) ∈ ℝ)
1918ralrimivva 3000 . . . 4 (𝐼 ∈ Fin → ∀𝑥𝑋𝑦𝑋 (√‘Σ𝑘𝐼 (((𝑥𝑘) − (𝑦𝑘))↑2)) ∈ ℝ)
20 eqid 2651 . . . . 5 (𝑥𝑋, 𝑦𝑋 ↦ (√‘Σ𝑘𝐼 (((𝑥𝑘) − (𝑦𝑘))↑2))) = (𝑥𝑋, 𝑦𝑋 ↦ (√‘Σ𝑘𝐼 (((𝑥𝑘) − (𝑦𝑘))↑2)))
2120fmpt2 7282 . . . 4 (∀𝑥𝑋𝑦𝑋 (√‘Σ𝑘𝐼 (((𝑥𝑘) − (𝑦𝑘))↑2)) ∈ ℝ ↔ (𝑥𝑋, 𝑦𝑋 ↦ (√‘Σ𝑘𝐼 (((𝑥𝑘) − (𝑦𝑘))↑2))):(𝑋 × 𝑋)⟶ℝ)
2219, 21sylib 208 . . 3 (𝐼 ∈ Fin → (𝑥𝑋, 𝑦𝑋 ↦ (√‘Σ𝑘𝐼 (((𝑥𝑘) − (𝑦𝑘))↑2))):(𝑋 × 𝑋)⟶ℝ)
233rrnval 33756 . . . 4 (𝐼 ∈ Fin → (ℝn𝐼) = (𝑥𝑋, 𝑦𝑋 ↦ (√‘Σ𝑘𝐼 (((𝑥𝑘) − (𝑦𝑘))↑2))))
2423feq1d 6068 . . 3 (𝐼 ∈ Fin → ((ℝn𝐼):(𝑋 × 𝑋)⟶ℝ ↔ (𝑥𝑋, 𝑦𝑋 ↦ (√‘Σ𝑘𝐼 (((𝑥𝑘) − (𝑦𝑘))↑2))):(𝑋 × 𝑋)⟶ℝ))
2522, 24mpbird 247 . 2 (𝐼 ∈ Fin → (ℝn𝐼):(𝑋 × 𝑋)⟶ℝ)
26 sqrt00 14048 . . . . . . . 8 ((Σ𝑘𝐼 (((𝑥𝑘) − (𝑦𝑘))↑2) ∈ ℝ ∧ 0 ≤ Σ𝑘𝐼 (((𝑥𝑘) − (𝑦𝑘))↑2)) → ((√‘Σ𝑘𝐼 (((𝑥𝑘) − (𝑦𝑘))↑2)) = 0 ↔ Σ𝑘𝐼 (((𝑥𝑘) − (𝑦𝑘))↑2) = 0))
2715, 17, 26syl2anc 694 . . . . . . 7 ((𝐼 ∈ Fin ∧ (𝑥𝑋𝑦𝑋)) → ((√‘Σ𝑘𝐼 (((𝑥𝑘) − (𝑦𝑘))↑2)) = 0 ↔ Σ𝑘𝐼 (((𝑥𝑘) − (𝑦𝑘))↑2) = 0))
281, 14, 16fsum00 14574 . . . . . . 7 ((𝐼 ∈ Fin ∧ (𝑥𝑋𝑦𝑋)) → (Σ𝑘𝐼 (((𝑥𝑘) − (𝑦𝑘))↑2) = 0 ↔ ∀𝑘𝐼 (((𝑥𝑘) − (𝑦𝑘))↑2) = 0))
2927, 28bitrd 268 . . . . . 6 ((𝐼 ∈ Fin ∧ (𝑥𝑋𝑦𝑋)) → ((√‘Σ𝑘𝐼 (((𝑥𝑘) − (𝑦𝑘))↑2)) = 0 ↔ ∀𝑘𝐼 (((𝑥𝑘) − (𝑦𝑘))↑2) = 0))
3013recnd 10106 . . . . . . . . 9 (((𝐼 ∈ Fin ∧ (𝑥𝑋𝑦𝑋)) ∧ 𝑘𝐼) → ((𝑥𝑘) − (𝑦𝑘)) ∈ ℂ)
31 sqeq0 12967 . . . . . . . . 9 (((𝑥𝑘) − (𝑦𝑘)) ∈ ℂ → ((((𝑥𝑘) − (𝑦𝑘))↑2) = 0 ↔ ((𝑥𝑘) − (𝑦𝑘)) = 0))
3230, 31syl 17 . . . . . . . 8 (((𝐼 ∈ Fin ∧ (𝑥𝑋𝑦𝑋)) ∧ 𝑘𝐼) → ((((𝑥𝑘) − (𝑦𝑘))↑2) = 0 ↔ ((𝑥𝑘) − (𝑦𝑘)) = 0))
337recnd 10106 . . . . . . . . 9 (((𝐼 ∈ Fin ∧ (𝑥𝑋𝑦𝑋)) ∧ 𝑘𝐼) → (𝑥𝑘) ∈ ℂ)
3412recnd 10106 . . . . . . . . 9 (((𝐼 ∈ Fin ∧ (𝑥𝑋𝑦𝑋)) ∧ 𝑘𝐼) → (𝑦𝑘) ∈ ℂ)
3533, 34subeq0ad 10440 . . . . . . . 8 (((𝐼 ∈ Fin ∧ (𝑥𝑋𝑦𝑋)) ∧ 𝑘𝐼) → (((𝑥𝑘) − (𝑦𝑘)) = 0 ↔ (𝑥𝑘) = (𝑦𝑘)))
3632, 35bitrd 268 . . . . . . 7 (((𝐼 ∈ Fin ∧ (𝑥𝑋𝑦𝑋)) ∧ 𝑘𝐼) → ((((𝑥𝑘) − (𝑦𝑘))↑2) = 0 ↔ (𝑥𝑘) = (𝑦𝑘)))
3736ralbidva 3014 . . . . . 6 ((𝐼 ∈ Fin ∧ (𝑥𝑋𝑦𝑋)) → (∀𝑘𝐼 (((𝑥𝑘) − (𝑦𝑘))↑2) = 0 ↔ ∀𝑘𝐼 (𝑥𝑘) = (𝑦𝑘)))
3829, 37bitrd 268 . . . . 5 ((𝐼 ∈ Fin ∧ (𝑥𝑋𝑦𝑋)) → ((√‘Σ𝑘𝐼 (((𝑥𝑘) − (𝑦𝑘))↑2)) = 0 ↔ ∀𝑘𝐼 (𝑥𝑘) = (𝑦𝑘)))
393rrnmval 33757 . . . . . . 7 ((𝐼 ∈ Fin ∧ 𝑥𝑋𝑦𝑋) → (𝑥(ℝn𝐼)𝑦) = (√‘Σ𝑘𝐼 (((𝑥𝑘) − (𝑦𝑘))↑2)))
40393expb 1285 . . . . . 6 ((𝐼 ∈ Fin ∧ (𝑥𝑋𝑦𝑋)) → (𝑥(ℝn𝐼)𝑦) = (√‘Σ𝑘𝐼 (((𝑥𝑘) − (𝑦𝑘))↑2)))
4140eqeq1d 2653 . . . . 5 ((𝐼 ∈ Fin ∧ (𝑥𝑋𝑦𝑋)) → ((𝑥(ℝn𝐼)𝑦) = 0 ↔ (√‘Σ𝑘𝐼 (((𝑥𝑘) − (𝑦𝑘))↑2)) = 0))
42 ffn 6083 . . . . . . 7 (𝑥:𝐼⟶ℝ → 𝑥 Fn 𝐼)
436, 42syl 17 . . . . . 6 ((𝐼 ∈ Fin ∧ (𝑥𝑋𝑦𝑋)) → 𝑥 Fn 𝐼)
44 ffn 6083 . . . . . . 7 (𝑦:𝐼⟶ℝ → 𝑦 Fn 𝐼)
4511, 44syl 17 . . . . . 6 ((𝐼 ∈ Fin ∧ (𝑥𝑋𝑦𝑋)) → 𝑦 Fn 𝐼)
46 eqfnfv 6351 . . . . . 6 ((𝑥 Fn 𝐼𝑦 Fn 𝐼) → (𝑥 = 𝑦 ↔ ∀𝑘𝐼 (𝑥𝑘) = (𝑦𝑘)))
4743, 45, 46syl2anc 694 . . . . 5 ((𝐼 ∈ Fin ∧ (𝑥𝑋𝑦𝑋)) → (𝑥 = 𝑦 ↔ ∀𝑘𝐼 (𝑥𝑘) = (𝑦𝑘)))
4838, 41, 473bitr4d 300 . . . 4 ((𝐼 ∈ Fin ∧ (𝑥𝑋𝑦𝑋)) → ((𝑥(ℝn𝐼)𝑦) = 0 ↔ 𝑥 = 𝑦))
49 simpll 805 . . . . . . . 8 (((𝐼 ∈ Fin ∧ (𝑥𝑋𝑦𝑋)) ∧ 𝑧𝑋) → 𝐼 ∈ Fin)
507adantlr 751 . . . . . . . . 9 ((((𝐼 ∈ Fin ∧ (𝑥𝑋𝑦𝑋)) ∧ 𝑧𝑋) ∧ 𝑘𝐼) → (𝑥𝑘) ∈ ℝ)
51 simpr 476 . . . . . . . . . . . 12 (((𝐼 ∈ Fin ∧ (𝑥𝑋𝑦𝑋)) ∧ 𝑧𝑋) → 𝑧𝑋)
5251, 3syl6eleq 2740 . . . . . . . . . . 11 (((𝐼 ∈ Fin ∧ (𝑥𝑋𝑦𝑋)) ∧ 𝑧𝑋) → 𝑧 ∈ (ℝ ↑𝑚 𝐼))
53 elmapi 7921 . . . . . . . . . . 11 (𝑧 ∈ (ℝ ↑𝑚 𝐼) → 𝑧:𝐼⟶ℝ)
5452, 53syl 17 . . . . . . . . . 10 (((𝐼 ∈ Fin ∧ (𝑥𝑋𝑦𝑋)) ∧ 𝑧𝑋) → 𝑧:𝐼⟶ℝ)
5554ffvelrnda 6399 . . . . . . . . 9 ((((𝐼 ∈ Fin ∧ (𝑥𝑋𝑦𝑋)) ∧ 𝑧𝑋) ∧ 𝑘𝐼) → (𝑧𝑘) ∈ ℝ)
5650, 55resubcld 10496 . . . . . . . 8 ((((𝐼 ∈ Fin ∧ (𝑥𝑋𝑦𝑋)) ∧ 𝑧𝑋) ∧ 𝑘𝐼) → ((𝑥𝑘) − (𝑧𝑘)) ∈ ℝ)
5712adantlr 751 . . . . . . . . 9 ((((𝐼 ∈ Fin ∧ (𝑥𝑋𝑦𝑋)) ∧ 𝑧𝑋) ∧ 𝑘𝐼) → (𝑦𝑘) ∈ ℝ)
5855, 57resubcld 10496 . . . . . . . 8 ((((𝐼 ∈ Fin ∧ (𝑥𝑋𝑦𝑋)) ∧ 𝑧𝑋) ∧ 𝑘𝐼) → ((𝑧𝑘) − (𝑦𝑘)) ∈ ℝ)
5949, 56, 58trirn 23229 . . . . . . 7 (((𝐼 ∈ Fin ∧ (𝑥𝑋𝑦𝑋)) ∧ 𝑧𝑋) → (√‘Σ𝑘𝐼 ((((𝑥𝑘) − (𝑧𝑘)) + ((𝑧𝑘) − (𝑦𝑘)))↑2)) ≤ ((√‘Σ𝑘𝐼 (((𝑥𝑘) − (𝑧𝑘))↑2)) + (√‘Σ𝑘𝐼 (((𝑧𝑘) − (𝑦𝑘))↑2))))
6033adantlr 751 . . . . . . . . . . 11 ((((𝐼 ∈ Fin ∧ (𝑥𝑋𝑦𝑋)) ∧ 𝑧𝑋) ∧ 𝑘𝐼) → (𝑥𝑘) ∈ ℂ)
6155recnd 10106 . . . . . . . . . . 11 ((((𝐼 ∈ Fin ∧ (𝑥𝑋𝑦𝑋)) ∧ 𝑧𝑋) ∧ 𝑘𝐼) → (𝑧𝑘) ∈ ℂ)
6234adantlr 751 . . . . . . . . . . 11 ((((𝐼 ∈ Fin ∧ (𝑥𝑋𝑦𝑋)) ∧ 𝑧𝑋) ∧ 𝑘𝐼) → (𝑦𝑘) ∈ ℂ)
6360, 61, 62npncand 10454 . . . . . . . . . 10 ((((𝐼 ∈ Fin ∧ (𝑥𝑋𝑦𝑋)) ∧ 𝑧𝑋) ∧ 𝑘𝐼) → (((𝑥𝑘) − (𝑧𝑘)) + ((𝑧𝑘) − (𝑦𝑘))) = ((𝑥𝑘) − (𝑦𝑘)))
6463oveq1d 6705 . . . . . . . . 9 ((((𝐼 ∈ Fin ∧ (𝑥𝑋𝑦𝑋)) ∧ 𝑧𝑋) ∧ 𝑘𝐼) → ((((𝑥𝑘) − (𝑧𝑘)) + ((𝑧𝑘) − (𝑦𝑘)))↑2) = (((𝑥𝑘) − (𝑦𝑘))↑2))
6564sumeq2dv 14477 . . . . . . . 8 (((𝐼 ∈ Fin ∧ (𝑥𝑋𝑦𝑋)) ∧ 𝑧𝑋) → Σ𝑘𝐼 ((((𝑥𝑘) − (𝑧𝑘)) + ((𝑧𝑘) − (𝑦𝑘)))↑2) = Σ𝑘𝐼 (((𝑥𝑘) − (𝑦𝑘))↑2))
6665fveq2d 6233 . . . . . . 7 (((𝐼 ∈ Fin ∧ (𝑥𝑋𝑦𝑋)) ∧ 𝑧𝑋) → (√‘Σ𝑘𝐼 ((((𝑥𝑘) − (𝑧𝑘)) + ((𝑧𝑘) − (𝑦𝑘)))↑2)) = (√‘Σ𝑘𝐼 (((𝑥𝑘) − (𝑦𝑘))↑2)))
67 sqsubswap 12964 . . . . . . . . . . 11 (((𝑥𝑘) ∈ ℂ ∧ (𝑧𝑘) ∈ ℂ) → (((𝑥𝑘) − (𝑧𝑘))↑2) = (((𝑧𝑘) − (𝑥𝑘))↑2))
6860, 61, 67syl2anc 694 . . . . . . . . . 10 ((((𝐼 ∈ Fin ∧ (𝑥𝑋𝑦𝑋)) ∧ 𝑧𝑋) ∧ 𝑘𝐼) → (((𝑥𝑘) − (𝑧𝑘))↑2) = (((𝑧𝑘) − (𝑥𝑘))↑2))
6968sumeq2dv 14477 . . . . . . . . 9 (((𝐼 ∈ Fin ∧ (𝑥𝑋𝑦𝑋)) ∧ 𝑧𝑋) → Σ𝑘𝐼 (((𝑥𝑘) − (𝑧𝑘))↑2) = Σ𝑘𝐼 (((𝑧𝑘) − (𝑥𝑘))↑2))
7069fveq2d 6233 . . . . . . . 8 (((𝐼 ∈ Fin ∧ (𝑥𝑋𝑦𝑋)) ∧ 𝑧𝑋) → (√‘Σ𝑘𝐼 (((𝑥𝑘) − (𝑧𝑘))↑2)) = (√‘Σ𝑘𝐼 (((𝑧𝑘) − (𝑥𝑘))↑2)))
7170oveq1d 6705 . . . . . . 7 (((𝐼 ∈ Fin ∧ (𝑥𝑋𝑦𝑋)) ∧ 𝑧𝑋) → ((√‘Σ𝑘𝐼 (((𝑥𝑘) − (𝑧𝑘))↑2)) + (√‘Σ𝑘𝐼 (((𝑧𝑘) − (𝑦𝑘))↑2))) = ((√‘Σ𝑘𝐼 (((𝑧𝑘) − (𝑥𝑘))↑2)) + (√‘Σ𝑘𝐼 (((𝑧𝑘) − (𝑦𝑘))↑2))))
7259, 66, 713brtr3d 4716 . . . . . 6 (((𝐼 ∈ Fin ∧ (𝑥𝑋𝑦𝑋)) ∧ 𝑧𝑋) → (√‘Σ𝑘𝐼 (((𝑥𝑘) − (𝑦𝑘))↑2)) ≤ ((√‘Σ𝑘𝐼 (((𝑧𝑘) − (𝑥𝑘))↑2)) + (√‘Σ𝑘𝐼 (((𝑧𝑘) − (𝑦𝑘))↑2))))
7340adantr 480 . . . . . 6 (((𝐼 ∈ Fin ∧ (𝑥𝑋𝑦𝑋)) ∧ 𝑧𝑋) → (𝑥(ℝn𝐼)𝑦) = (√‘Σ𝑘𝐼 (((𝑥𝑘) − (𝑦𝑘))↑2)))
743rrnmval 33757 . . . . . . . . . 10 ((𝐼 ∈ Fin ∧ 𝑧𝑋𝑥𝑋) → (𝑧(ℝn𝐼)𝑥) = (√‘Σ𝑘𝐼 (((𝑧𝑘) − (𝑥𝑘))↑2)))
75743adant3r 1363 . . . . . . . . 9 ((𝐼 ∈ Fin ∧ 𝑧𝑋 ∧ (𝑥𝑋𝑦𝑋)) → (𝑧(ℝn𝐼)𝑥) = (√‘Σ𝑘𝐼 (((𝑧𝑘) − (𝑥𝑘))↑2)))
763rrnmval 33757 . . . . . . . . . 10 ((𝐼 ∈ Fin ∧ 𝑧𝑋𝑦𝑋) → (𝑧(ℝn𝐼)𝑦) = (√‘Σ𝑘𝐼 (((𝑧𝑘) − (𝑦𝑘))↑2)))
77763adant3l 1362 . . . . . . . . 9 ((𝐼 ∈ Fin ∧ 𝑧𝑋 ∧ (𝑥𝑋𝑦𝑋)) → (𝑧(ℝn𝐼)𝑦) = (√‘Σ𝑘𝐼 (((𝑧𝑘) − (𝑦𝑘))↑2)))
7875, 77oveq12d 6708 . . . . . . . 8 ((𝐼 ∈ Fin ∧ 𝑧𝑋 ∧ (𝑥𝑋𝑦𝑋)) → ((𝑧(ℝn𝐼)𝑥) + (𝑧(ℝn𝐼)𝑦)) = ((√‘Σ𝑘𝐼 (((𝑧𝑘) − (𝑥𝑘))↑2)) + (√‘Σ𝑘𝐼 (((𝑧𝑘) − (𝑦𝑘))↑2))))
79783expa 1284 . . . . . . 7 (((𝐼 ∈ Fin ∧ 𝑧𝑋) ∧ (𝑥𝑋𝑦𝑋)) → ((𝑧(ℝn𝐼)𝑥) + (𝑧(ℝn𝐼)𝑦)) = ((√‘Σ𝑘𝐼 (((𝑧𝑘) − (𝑥𝑘))↑2)) + (√‘Σ𝑘𝐼 (((𝑧𝑘) − (𝑦𝑘))↑2))))
8079an32s 863 . . . . . 6 (((𝐼 ∈ Fin ∧ (𝑥𝑋𝑦𝑋)) ∧ 𝑧𝑋) → ((𝑧(ℝn𝐼)𝑥) + (𝑧(ℝn𝐼)𝑦)) = ((√‘Σ𝑘𝐼 (((𝑧𝑘) − (𝑥𝑘))↑2)) + (√‘Σ𝑘𝐼 (((𝑧𝑘) − (𝑦𝑘))↑2))))
8172, 73, 803brtr4d 4717 . . . . 5 (((𝐼 ∈ Fin ∧ (𝑥𝑋𝑦𝑋)) ∧ 𝑧𝑋) → (𝑥(ℝn𝐼)𝑦) ≤ ((𝑧(ℝn𝐼)𝑥) + (𝑧(ℝn𝐼)𝑦)))
8281ralrimiva 2995 . . . 4 ((𝐼 ∈ Fin ∧ (𝑥𝑋𝑦𝑋)) → ∀𝑧𝑋 (𝑥(ℝn𝐼)𝑦) ≤ ((𝑧(ℝn𝐼)𝑥) + (𝑧(ℝn𝐼)𝑦)))
8348, 82jca 553 . . 3 ((𝐼 ∈ Fin ∧ (𝑥𝑋𝑦𝑋)) → (((𝑥(ℝn𝐼)𝑦) = 0 ↔ 𝑥 = 𝑦) ∧ ∀𝑧𝑋 (𝑥(ℝn𝐼)𝑦) ≤ ((𝑧(ℝn𝐼)𝑥) + (𝑧(ℝn𝐼)𝑦))))
8483ralrimivva 3000 . 2 (𝐼 ∈ Fin → ∀𝑥𝑋𝑦𝑋 (((𝑥(ℝn𝐼)𝑦) = 0 ↔ 𝑥 = 𝑦) ∧ ∀𝑧𝑋 (𝑥(ℝn𝐼)𝑦) ≤ ((𝑧(ℝn𝐼)𝑥) + (𝑧(ℝn𝐼)𝑦))))
85 ovex 6718 . . . 4 (ℝ ↑𝑚 𝐼) ∈ V
863, 85eqeltri 2726 . . 3 𝑋 ∈ V
87 ismet 22175 . . 3 (𝑋 ∈ V → ((ℝn𝐼) ∈ (Met‘𝑋) ↔ ((ℝn𝐼):(𝑋 × 𝑋)⟶ℝ ∧ ∀𝑥𝑋𝑦𝑋 (((𝑥(ℝn𝐼)𝑦) = 0 ↔ 𝑥 = 𝑦) ∧ ∀𝑧𝑋 (𝑥(ℝn𝐼)𝑦) ≤ ((𝑧(ℝn𝐼)𝑥) + (𝑧(ℝn𝐼)𝑦))))))
8886, 87ax-mp 5 . 2 ((ℝn𝐼) ∈ (Met‘𝑋) ↔ ((ℝn𝐼):(𝑋 × 𝑋)⟶ℝ ∧ ∀𝑥𝑋𝑦𝑋 (((𝑥(ℝn𝐼)𝑦) = 0 ↔ 𝑥 = 𝑦) ∧ ∀𝑧𝑋 (𝑥(ℝn𝐼)𝑦) ≤ ((𝑧(ℝn𝐼)𝑥) + (𝑧(ℝn𝐼)𝑦)))))
8925, 84, 88sylanbrc 699 1 (𝐼 ∈ Fin → (ℝn𝐼) ∈ (Met‘𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 383  w3a 1054   = wceq 1523  wcel 2030  wral 2941  Vcvv 3231   class class class wbr 4685   × cxp 5141   Fn wfn 5921  wf 5922  cfv 5926  (class class class)co 6690  cmpt2 6692  𝑚 cmap 7899  Fincfn 7997  cc 9972  cr 9973  0cc0 9974   + caddc 9977  cle 10113  cmin 10304  2c2 11108  cexp 12900  csqrt 14017  Σcsu 14460  Metcme 19780  ncrrn 33754
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-rep 4804  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991  ax-inf2 8576  ax-cnex 10030  ax-resscn 10031  ax-1cn 10032  ax-icn 10033  ax-addcl 10034  ax-addrcl 10035  ax-mulcl 10036  ax-mulrcl 10037  ax-mulcom 10038  ax-addass 10039  ax-mulass 10040  ax-distr 10041  ax-i2m1 10042  ax-1ne0 10043  ax-1rid 10044  ax-rnegex 10045  ax-rrecex 10046  ax-cnre 10047  ax-pre-lttri 10048  ax-pre-lttrn 10049  ax-pre-ltadd 10050  ax-pre-mulgt0 10051  ax-pre-sup 10052
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-fal 1529  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-nel 2927  df-ral 2946  df-rex 2947  df-reu 2948  df-rmo 2949  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-uni 4469  df-int 4508  df-iun 4554  df-br 4686  df-opab 4746  df-mpt 4763  df-tr 4786  df-id 5053  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-se 5103  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-pred 5718  df-ord 5764  df-on 5765  df-lim 5766  df-suc 5767  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-isom 5935  df-riota 6651  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-om 7108  df-1st 7210  df-2nd 7211  df-wrecs 7452  df-recs 7513  df-rdg 7551  df-1o 7605  df-oadd 7609  df-er 7787  df-map 7901  df-en 7998  df-dom 7999  df-sdom 8000  df-fin 8001  df-sup 8389  df-oi 8456  df-card 8803  df-pnf 10114  df-mnf 10115  df-xr 10116  df-ltxr 10117  df-le 10118  df-sub 10306  df-neg 10307  df-div 10723  df-nn 11059  df-2 11117  df-3 11118  df-4 11119  df-n0 11331  df-z 11416  df-uz 11726  df-rp 11871  df-ico 12219  df-fz 12365  df-fzo 12505  df-seq 12842  df-exp 12901  df-hash 13158  df-cj 13883  df-re 13884  df-im 13885  df-sqrt 14019  df-abs 14020  df-clim 14263  df-sum 14461  df-met 19788  df-rrn 33755
This theorem is referenced by:  rrncmslem  33761  rrncms  33762  rrnequiv  33764  rrntotbnd  33765  rrnheibor  33766  ismrer1  33767  reheibor  33768
  Copyright terms: Public domain W3C validator