![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > rrxprds | Structured version Visualization version GIF version |
Description: Expand the definition of the generalized real Euclidean spaces. (Contributed by Thierry Arnoux, 16-Jun-2019.) |
Ref | Expression |
---|---|
rrxval.r | ⊢ 𝐻 = (ℝ^‘𝐼) |
rrxbase.b | ⊢ 𝐵 = (Base‘𝐻) |
Ref | Expression |
---|---|
rrxprds | ⊢ (𝐼 ∈ 𝑉 → 𝐻 = (toℂHil‘((ℝfldXs(𝐼 × {((subringAlg ‘ℝfld)‘ℝ)})) ↾s 𝐵))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rrxval.r | . . 3 ⊢ 𝐻 = (ℝ^‘𝐼) | |
2 | 1 | rrxval 23221 | . 2 ⊢ (𝐼 ∈ 𝑉 → 𝐻 = (toℂHil‘(ℝfld freeLMod 𝐼))) |
3 | refld 20013 | . . . . 5 ⊢ ℝfld ∈ Field | |
4 | eqid 2651 | . . . . . 6 ⊢ (ℝfld freeLMod 𝐼) = (ℝfld freeLMod 𝐼) | |
5 | eqid 2651 | . . . . . 6 ⊢ (Base‘(ℝfld freeLMod 𝐼)) = (Base‘(ℝfld freeLMod 𝐼)) | |
6 | 4, 5 | frlmpws 20142 | . . . . 5 ⊢ ((ℝfld ∈ Field ∧ 𝐼 ∈ 𝑉) → (ℝfld freeLMod 𝐼) = (((ringLMod‘ℝfld) ↑s 𝐼) ↾s (Base‘(ℝfld freeLMod 𝐼)))) |
7 | 3, 6 | mpan 706 | . . . 4 ⊢ (𝐼 ∈ 𝑉 → (ℝfld freeLMod 𝐼) = (((ringLMod‘ℝfld) ↑s 𝐼) ↾s (Base‘(ℝfld freeLMod 𝐼)))) |
8 | fvex 6239 | . . . . . . 7 ⊢ ((subringAlg ‘ℝfld)‘ℝ) ∈ V | |
9 | rlmval 19239 | . . . . . . . . . 10 ⊢ (ringLMod‘ℝfld) = ((subringAlg ‘ℝfld)‘(Base‘ℝfld)) | |
10 | rebase 20000 | . . . . . . . . . . 11 ⊢ ℝ = (Base‘ℝfld) | |
11 | 10 | fveq2i 6232 | . . . . . . . . . 10 ⊢ ((subringAlg ‘ℝfld)‘ℝ) = ((subringAlg ‘ℝfld)‘(Base‘ℝfld)) |
12 | 9, 11 | eqtr4i 2676 | . . . . . . . . 9 ⊢ (ringLMod‘ℝfld) = ((subringAlg ‘ℝfld)‘ℝ) |
13 | 12 | oveq1i 6700 | . . . . . . . 8 ⊢ ((ringLMod‘ℝfld) ↑s 𝐼) = (((subringAlg ‘ℝfld)‘ℝ) ↑s 𝐼) |
14 | 10 | ressid 15982 | . . . . . . . . . 10 ⊢ (ℝfld ∈ Field → (ℝfld ↾s ℝ) = ℝfld) |
15 | 3, 14 | ax-mp 5 | . . . . . . . . 9 ⊢ (ℝfld ↾s ℝ) = ℝfld |
16 | eqidd 2652 | . . . . . . . . . . 11 ⊢ (⊤ → ((subringAlg ‘ℝfld)‘ℝ) = ((subringAlg ‘ℝfld)‘ℝ)) | |
17 | 10 | eqimssi 3692 | . . . . . . . . . . . 12 ⊢ ℝ ⊆ (Base‘ℝfld) |
18 | 17 | a1i 11 | . . . . . . . . . . 11 ⊢ (⊤ → ℝ ⊆ (Base‘ℝfld)) |
19 | 16, 18 | srasca 19229 | . . . . . . . . . 10 ⊢ (⊤ → (ℝfld ↾s ℝ) = (Scalar‘((subringAlg ‘ℝfld)‘ℝ))) |
20 | 19 | trud 1533 | . . . . . . . . 9 ⊢ (ℝfld ↾s ℝ) = (Scalar‘((subringAlg ‘ℝfld)‘ℝ)) |
21 | 15, 20 | eqtr3i 2675 | . . . . . . . 8 ⊢ ℝfld = (Scalar‘((subringAlg ‘ℝfld)‘ℝ)) |
22 | 13, 21 | pwsval 16193 | . . . . . . 7 ⊢ ((((subringAlg ‘ℝfld)‘ℝ) ∈ V ∧ 𝐼 ∈ 𝑉) → ((ringLMod‘ℝfld) ↑s 𝐼) = (ℝfldXs(𝐼 × {((subringAlg ‘ℝfld)‘ℝ)}))) |
23 | 8, 22 | mpan 706 | . . . . . 6 ⊢ (𝐼 ∈ 𝑉 → ((ringLMod‘ℝfld) ↑s 𝐼) = (ℝfldXs(𝐼 × {((subringAlg ‘ℝfld)‘ℝ)}))) |
24 | 23 | eqcomd 2657 | . . . . 5 ⊢ (𝐼 ∈ 𝑉 → (ℝfldXs(𝐼 × {((subringAlg ‘ℝfld)‘ℝ)})) = ((ringLMod‘ℝfld) ↑s 𝐼)) |
25 | 2 | fveq2d 6233 | . . . . . 6 ⊢ (𝐼 ∈ 𝑉 → (Base‘𝐻) = (Base‘(toℂHil‘(ℝfld freeLMod 𝐼)))) |
26 | rrxbase.b | . . . . . 6 ⊢ 𝐵 = (Base‘𝐻) | |
27 | eqid 2651 | . . . . . . 7 ⊢ (toℂHil‘(ℝfld freeLMod 𝐼)) = (toℂHil‘(ℝfld freeLMod 𝐼)) | |
28 | 27, 5 | tchbas 23064 | . . . . . 6 ⊢ (Base‘(ℝfld freeLMod 𝐼)) = (Base‘(toℂHil‘(ℝfld freeLMod 𝐼))) |
29 | 25, 26, 28 | 3eqtr4g 2710 | . . . . 5 ⊢ (𝐼 ∈ 𝑉 → 𝐵 = (Base‘(ℝfld freeLMod 𝐼))) |
30 | 24, 29 | oveq12d 6708 | . . . 4 ⊢ (𝐼 ∈ 𝑉 → ((ℝfldXs(𝐼 × {((subringAlg ‘ℝfld)‘ℝ)})) ↾s 𝐵) = (((ringLMod‘ℝfld) ↑s 𝐼) ↾s (Base‘(ℝfld freeLMod 𝐼)))) |
31 | 7, 30 | eqtr4d 2688 | . . 3 ⊢ (𝐼 ∈ 𝑉 → (ℝfld freeLMod 𝐼) = ((ℝfldXs(𝐼 × {((subringAlg ‘ℝfld)‘ℝ)})) ↾s 𝐵)) |
32 | 31 | fveq2d 6233 | . 2 ⊢ (𝐼 ∈ 𝑉 → (toℂHil‘(ℝfld freeLMod 𝐼)) = (toℂHil‘((ℝfldXs(𝐼 × {((subringAlg ‘ℝfld)‘ℝ)})) ↾s 𝐵))) |
33 | 2, 32 | eqtrd 2685 | 1 ⊢ (𝐼 ∈ 𝑉 → 𝐻 = (toℂHil‘((ℝfldXs(𝐼 × {((subringAlg ‘ℝfld)‘ℝ)})) ↾s 𝐵))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1523 ⊤wtru 1524 ∈ wcel 2030 Vcvv 3231 ⊆ wss 3607 {csn 4210 × cxp 5141 ‘cfv 5926 (class class class)co 6690 ℝcr 9973 Basecbs 15904 ↾s cress 15905 Scalarcsca 15991 Xscprds 16153 ↑s cpws 16154 Fieldcfield 18796 subringAlg csra 19216 ringLModcrglmod 19217 ℝfldcrefld 19998 freeLMod cfrlm 20138 toℂHilctch 23013 ℝ^crrx 23217 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-8 2032 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 ax-rep 4804 ax-sep 4814 ax-nul 4822 ax-pow 4873 ax-pr 4936 ax-un 6991 ax-cnex 10030 ax-resscn 10031 ax-1cn 10032 ax-icn 10033 ax-addcl 10034 ax-addrcl 10035 ax-mulcl 10036 ax-mulrcl 10037 ax-mulcom 10038 ax-addass 10039 ax-mulass 10040 ax-distr 10041 ax-i2m1 10042 ax-1ne0 10043 ax-1rid 10044 ax-rnegex 10045 ax-rrecex 10046 ax-cnre 10047 ax-pre-lttri 10048 ax-pre-lttrn 10049 ax-pre-ltadd 10050 ax-pre-mulgt0 10051 ax-pre-sup 10052 ax-addf 10053 ax-mulf 10054 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1055 df-3an 1056 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-eu 2502 df-mo 2503 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-ne 2824 df-nel 2927 df-ral 2946 df-rex 2947 df-reu 2948 df-rmo 2949 df-rab 2950 df-v 3233 df-sbc 3469 df-csb 3567 df-dif 3610 df-un 3612 df-in 3614 df-ss 3621 df-pss 3623 df-nul 3949 df-if 4120 df-pw 4193 df-sn 4211 df-pr 4213 df-tp 4215 df-op 4217 df-uni 4469 df-int 4508 df-iun 4554 df-br 4686 df-opab 4746 df-mpt 4763 df-tr 4786 df-id 5053 df-eprel 5058 df-po 5064 df-so 5065 df-fr 5102 df-we 5104 df-xp 5149 df-rel 5150 df-cnv 5151 df-co 5152 df-dm 5153 df-rn 5154 df-res 5155 df-ima 5156 df-pred 5718 df-ord 5764 df-on 5765 df-lim 5766 df-suc 5767 df-iota 5889 df-fun 5928 df-fn 5929 df-f 5930 df-f1 5931 df-fo 5932 df-f1o 5933 df-fv 5934 df-riota 6651 df-ov 6693 df-oprab 6694 df-mpt2 6695 df-om 7108 df-1st 7210 df-2nd 7211 df-tpos 7397 df-wrecs 7452 df-recs 7513 df-rdg 7551 df-1o 7605 df-oadd 7609 df-er 7787 df-map 7901 df-ixp 7951 df-en 7998 df-dom 7999 df-sdom 8000 df-fin 8001 df-sup 8389 df-pnf 10114 df-mnf 10115 df-xr 10116 df-ltxr 10117 df-le 10118 df-sub 10306 df-neg 10307 df-div 10723 df-nn 11059 df-2 11117 df-3 11118 df-4 11119 df-5 11120 df-6 11121 df-7 11122 df-8 11123 df-9 11124 df-n0 11331 df-z 11416 df-dec 11532 df-uz 11726 df-rp 11871 df-fz 12365 df-seq 12842 df-exp 12901 df-cj 13883 df-re 13884 df-im 13885 df-sqrt 14019 df-abs 14020 df-struct 15906 df-ndx 15907 df-slot 15908 df-base 15910 df-sets 15911 df-ress 15912 df-plusg 16001 df-mulr 16002 df-starv 16003 df-sca 16004 df-vsca 16005 df-ip 16006 df-tset 16007 df-ple 16008 df-ds 16011 df-unif 16012 df-hom 16013 df-cco 16014 df-0g 16149 df-prds 16155 df-pws 16157 df-mgm 17289 df-sgrp 17331 df-mnd 17342 df-grp 17472 df-minusg 17473 df-subg 17638 df-cmn 18241 df-mgp 18536 df-ur 18548 df-ring 18595 df-cring 18596 df-oppr 18669 df-dvdsr 18687 df-unit 18688 df-invr 18718 df-dvr 18729 df-drng 18797 df-field 18798 df-subrg 18826 df-sra 19220 df-rgmod 19221 df-cnfld 19795 df-refld 19999 df-dsmm 20124 df-frlm 20139 df-tng 22436 df-tch 23015 df-rrx 23219 |
This theorem is referenced by: rrxip 23224 |
Copyright terms: Public domain | W3C validator |