Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  rspcedeq1vd Structured version   Visualization version   GIF version

Theorem rspcedeq1vd 3349
 Description: Restricted existential specialization, using implicit substitution. Variant of rspcedvd 3348 for equations, in which the left hand side depends on the quantified variable. (Contributed by AV, 24-Dec-2019.)
Hypotheses
Ref Expression
rspcedeqvd.1 (𝜑𝐴𝐵)
rspcedeqvd.2 ((𝜑𝑥 = 𝐴) → 𝐶 = 𝐷)
Assertion
Ref Expression
rspcedeq1vd (𝜑 → ∃𝑥𝐵 𝐶 = 𝐷)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝜑,𝑥   𝑥,𝐷
Allowed substitution hint:   𝐶(𝑥)

Proof of Theorem rspcedeq1vd
StepHypRef Expression
1 rspcedeqvd.1 . 2 (𝜑𝐴𝐵)
2 rspcedeqvd.2 . . 3 ((𝜑𝑥 = 𝐴) → 𝐶 = 𝐷)
32eqeq1d 2653 . 2 ((𝜑𝑥 = 𝐴) → (𝐶 = 𝐷𝐷 = 𝐷))
4 eqidd 2652 . 2 (𝜑𝐷 = 𝐷)
51, 3, 4rspcedvd 3348 1 (𝜑 → ∃𝑥𝐵 𝐶 = 𝐷)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 383   = wceq 1523   ∈ wcel 2030  ∃wrex 2942 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631 This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ral 2946  df-rex 2947  df-v 3233 This theorem is referenced by:  mod2eq1n2dvds  15118
 Copyright terms: Public domain W3C validator