![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > rspcegf | Structured version Visualization version GIF version |
Description: A version of rspcev 3340 using bound-variable hypotheses instead of distinct variable conditions. (Contributed by Glauco Siliprandi, 20-Apr-2017.) |
Ref | Expression |
---|---|
rspcegf.1 | ⊢ Ⅎ𝑥𝜓 |
rspcegf.2 | ⊢ Ⅎ𝑥𝐴 |
rspcegf.3 | ⊢ Ⅎ𝑥𝐵 |
rspcegf.4 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) |
Ref | Expression |
---|---|
rspcegf | ⊢ ((𝐴 ∈ 𝐵 ∧ 𝜓) → ∃𝑥 ∈ 𝐵 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rspcegf.2 | . . . 4 ⊢ Ⅎ𝑥𝐴 | |
2 | rspcegf.3 | . . . . . 6 ⊢ Ⅎ𝑥𝐵 | |
3 | 1, 2 | nfel 2806 | . . . . 5 ⊢ Ⅎ𝑥 𝐴 ∈ 𝐵 |
4 | rspcegf.1 | . . . . 5 ⊢ Ⅎ𝑥𝜓 | |
5 | 3, 4 | nfan 1868 | . . . 4 ⊢ Ⅎ𝑥(𝐴 ∈ 𝐵 ∧ 𝜓) |
6 | eleq1 2718 | . . . . 5 ⊢ (𝑥 = 𝐴 → (𝑥 ∈ 𝐵 ↔ 𝐴 ∈ 𝐵)) | |
7 | rspcegf.4 | . . . . 5 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) | |
8 | 6, 7 | anbi12d 747 | . . . 4 ⊢ (𝑥 = 𝐴 → ((𝑥 ∈ 𝐵 ∧ 𝜑) ↔ (𝐴 ∈ 𝐵 ∧ 𝜓))) |
9 | 1, 5, 8 | spcegf 3320 | . . 3 ⊢ (𝐴 ∈ 𝐵 → ((𝐴 ∈ 𝐵 ∧ 𝜓) → ∃𝑥(𝑥 ∈ 𝐵 ∧ 𝜑))) |
10 | 9 | anabsi5 875 | . 2 ⊢ ((𝐴 ∈ 𝐵 ∧ 𝜓) → ∃𝑥(𝑥 ∈ 𝐵 ∧ 𝜑)) |
11 | df-rex 2947 | . 2 ⊢ (∃𝑥 ∈ 𝐵 𝜑 ↔ ∃𝑥(𝑥 ∈ 𝐵 ∧ 𝜑)) | |
12 | 10, 11 | sylibr 224 | 1 ⊢ ((𝐴 ∈ 𝐵 ∧ 𝜓) → ∃𝑥 ∈ 𝐵 𝜑) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∧ wa 383 = wceq 1523 ∃wex 1744 Ⅎwnf 1748 ∈ wcel 2030 Ⅎwnfc 2780 ∃wrex 2942 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-rex 2947 df-v 3233 |
This theorem is referenced by: rspcef 39555 stoweidlem46 40581 |
Copyright terms: Public domain | W3C validator |