MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rspcimdv Structured version   Visualization version   GIF version

Theorem rspcimdv 3301
Description: Restricted specialization, using implicit substitution. (Contributed by Mario Carneiro, 4-Jan-2017.)
Hypotheses
Ref Expression
rspcimdv.1 (𝜑𝐴𝐵)
rspcimdv.2 ((𝜑𝑥 = 𝐴) → (𝜓𝜒))
Assertion
Ref Expression
rspcimdv (𝜑 → (∀𝑥𝐵 𝜓𝜒))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝜑,𝑥   𝜒,𝑥
Allowed substitution hint:   𝜓(𝑥)

Proof of Theorem rspcimdv
StepHypRef Expression
1 df-ral 2917 . 2 (∀𝑥𝐵 𝜓 ↔ ∀𝑥(𝑥𝐵𝜓))
2 rspcimdv.1 . . 3 (𝜑𝐴𝐵)
3 simpr 477 . . . . . . 7 ((𝜑𝑥 = 𝐴) → 𝑥 = 𝐴)
43eleq1d 2688 . . . . . 6 ((𝜑𝑥 = 𝐴) → (𝑥𝐵𝐴𝐵))
54biimprd 238 . . . . 5 ((𝜑𝑥 = 𝐴) → (𝐴𝐵𝑥𝐵))
6 rspcimdv.2 . . . . 5 ((𝜑𝑥 = 𝐴) → (𝜓𝜒))
75, 6imim12d 81 . . . 4 ((𝜑𝑥 = 𝐴) → ((𝑥𝐵𝜓) → (𝐴𝐵𝜒)))
82, 7spcimdv 3281 . . 3 (𝜑 → (∀𝑥(𝑥𝐵𝜓) → (𝐴𝐵𝜒)))
92, 8mpid 44 . 2 (𝜑 → (∀𝑥(𝑥𝐵𝜓) → 𝜒))
101, 9syl5bi 232 1 (𝜑 → (∀𝑥𝐵 𝜓𝜒))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384  wal 1478   = wceq 1480  wcel 1992  wral 2912
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1841  ax-6 1890  ax-7 1937  ax-9 2001  ax-10 2021  ax-11 2036  ax-12 2049  ax-13 2250  ax-ext 2606
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1883  df-clab 2613  df-cleq 2619  df-clel 2622  df-nfc 2756  df-ral 2917  df-v 3193
This theorem is referenced by:  rspcimedv  3302  rspcdv  3303  wrd2ind  13410  mreexd  16218  mreexexlemd  16220  catcocl  16262  catass  16263  moni  16312  subccocl  16421  funcco  16447  fullfo  16488  fthf1  16493  nati  16531  acsfiindd  17093  chpscmat  20561  friendshipgt3  27104  lmxrge0  29772  funressnfv  40480
  Copyright terms: Public domain W3C validator