![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > rspec | Structured version Visualization version GIF version |
Description: Specialization rule for restricted quantification. (Contributed by NM, 19-Nov-1994.) |
Ref | Expression |
---|---|
rspec.1 | ⊢ ∀𝑥 ∈ 𝐴 𝜑 |
Ref | Expression |
---|---|
rspec | ⊢ (𝑥 ∈ 𝐴 → 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rspec.1 | . 2 ⊢ ∀𝑥 ∈ 𝐴 𝜑 | |
2 | rsp 3067 | . 2 ⊢ (∀𝑥 ∈ 𝐴 𝜑 → (𝑥 ∈ 𝐴 → 𝜑)) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝑥 ∈ 𝐴 → 𝜑) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2139 ∀wral 3050 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1988 ax-6 2054 ax-7 2090 ax-12 2196 |
This theorem depends on definitions: df-bi 197 df-ex 1854 df-ral 3055 |
This theorem is referenced by: rspec2 3072 vtoclri 3423 wfis 5877 wfis2f 5879 wfis2 5881 isarep2 6139 ecopover 8018 alephsuc2 9093 indstr 11949 reltxrnmnf 12365 ackbijnn 14759 mrelatglb0 17386 0frgp 18392 iccpnfcnv 22944 frins 32052 frins2f 32054 prter2 34670 |
Copyright terms: Public domain | W3C validator |