MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rtrclreclem1 Structured version   Visualization version   GIF version

Theorem rtrclreclem1 14419
Description: The reflexive, transitive closure is indeed reflexive. (Contributed by Drahflow, 12-Nov-2015.) (Revised by RP, 30-May-2020.)
Hypotheses
Ref Expression
rtrclreclem.1 (𝜑 → Rel 𝑅)
rtrclreclem.2 (𝜑𝑅 ∈ V)
Assertion
Ref Expression
rtrclreclem1 (𝜑 → ( I ↾ 𝑅) ⊆ (t*rec‘𝑅))

Proof of Theorem rtrclreclem1
Dummy variables 𝑟 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 0nn0 11915 . . . . 5 0 ∈ ℕ0
2 ssid 3991 . . . . . 6 ( I ↾ 𝑅) ⊆ ( I ↾ 𝑅)
3 rtrclreclem.1 . . . . . . 7 (𝜑 → Rel 𝑅)
4 rtrclreclem.2 . . . . . . 7 (𝜑𝑅 ∈ V)
53, 4relexp0d 14385 . . . . . 6 (𝜑 → (𝑅𝑟0) = ( I ↾ 𝑅))
62, 5sseqtrrid 4022 . . . . 5 (𝜑 → ( I ↾ 𝑅) ⊆ (𝑅𝑟0))
7 oveq2 7166 . . . . . . 7 (𝑛 = 0 → (𝑅𝑟𝑛) = (𝑅𝑟0))
87sseq2d 4001 . . . . . 6 (𝑛 = 0 → (( I ↾ 𝑅) ⊆ (𝑅𝑟𝑛) ↔ ( I ↾ 𝑅) ⊆ (𝑅𝑟0)))
98rspcev 3625 . . . . 5 ((0 ∈ ℕ0 ∧ ( I ↾ 𝑅) ⊆ (𝑅𝑟0)) → ∃𝑛 ∈ ℕ0 ( I ↾ 𝑅) ⊆ (𝑅𝑟𝑛))
101, 6, 9sylancr 589 . . . 4 (𝜑 → ∃𝑛 ∈ ℕ0 ( I ↾ 𝑅) ⊆ (𝑅𝑟𝑛))
11 ssiun 4972 . . . 4 (∃𝑛 ∈ ℕ0 ( I ↾ 𝑅) ⊆ (𝑅𝑟𝑛) → ( I ↾ 𝑅) ⊆ 𝑛 ∈ ℕ0 (𝑅𝑟𝑛))
1210, 11syl 17 . . 3 (𝜑 → ( I ↾ 𝑅) ⊆ 𝑛 ∈ ℕ0 (𝑅𝑟𝑛))
13 nn0ex 11906 . . . . 5 0 ∈ V
14 ovex 7191 . . . . 5 (𝑅𝑟𝑛) ∈ V
1513, 14iunex 7671 . . . 4 𝑛 ∈ ℕ0 (𝑅𝑟𝑛) ∈ V
16 oveq1 7165 . . . . . 6 (𝑟 = 𝑅 → (𝑟𝑟𝑛) = (𝑅𝑟𝑛))
1716iuneq2d 4950 . . . . 5 (𝑟 = 𝑅 𝑛 ∈ ℕ0 (𝑟𝑟𝑛) = 𝑛 ∈ ℕ0 (𝑅𝑟𝑛))
18 eqid 2823 . . . . 5 (𝑟 ∈ V ↦ 𝑛 ∈ ℕ0 (𝑟𝑟𝑛)) = (𝑟 ∈ V ↦ 𝑛 ∈ ℕ0 (𝑟𝑟𝑛))
1917, 18fvmptg 6768 . . . 4 ((𝑅 ∈ V ∧ 𝑛 ∈ ℕ0 (𝑅𝑟𝑛) ∈ V) → ((𝑟 ∈ V ↦ 𝑛 ∈ ℕ0 (𝑟𝑟𝑛))‘𝑅) = 𝑛 ∈ ℕ0 (𝑅𝑟𝑛))
204, 15, 19sylancl 588 . . 3 (𝜑 → ((𝑟 ∈ V ↦ 𝑛 ∈ ℕ0 (𝑟𝑟𝑛))‘𝑅) = 𝑛 ∈ ℕ0 (𝑅𝑟𝑛))
2112, 20sseqtrrd 4010 . 2 (𝜑 → ( I ↾ 𝑅) ⊆ ((𝑟 ∈ V ↦ 𝑛 ∈ ℕ0 (𝑟𝑟𝑛))‘𝑅))
22 df-rtrclrec 14417 . . 3 t*rec = (𝑟 ∈ V ↦ 𝑛 ∈ ℕ0 (𝑟𝑟𝑛))
23 fveq1 6671 . . . . 5 (t*rec = (𝑟 ∈ V ↦ 𝑛 ∈ ℕ0 (𝑟𝑟𝑛)) → (t*rec‘𝑅) = ((𝑟 ∈ V ↦ 𝑛 ∈ ℕ0 (𝑟𝑟𝑛))‘𝑅))
2423sseq2d 4001 . . . 4 (t*rec = (𝑟 ∈ V ↦ 𝑛 ∈ ℕ0 (𝑟𝑟𝑛)) → (( I ↾ 𝑅) ⊆ (t*rec‘𝑅) ↔ ( I ↾ 𝑅) ⊆ ((𝑟 ∈ V ↦ 𝑛 ∈ ℕ0 (𝑟𝑟𝑛))‘𝑅)))
2524imbi2d 343 . . 3 (t*rec = (𝑟 ∈ V ↦ 𝑛 ∈ ℕ0 (𝑟𝑟𝑛)) → ((𝜑 → ( I ↾ 𝑅) ⊆ (t*rec‘𝑅)) ↔ (𝜑 → ( I ↾ 𝑅) ⊆ ((𝑟 ∈ V ↦ 𝑛 ∈ ℕ0 (𝑟𝑟𝑛))‘𝑅))))
2622, 25ax-mp 5 . 2 ((𝜑 → ( I ↾ 𝑅) ⊆ (t*rec‘𝑅)) ↔ (𝜑 → ( I ↾ 𝑅) ⊆ ((𝑟 ∈ V ↦ 𝑛 ∈ ℕ0 (𝑟𝑟𝑛))‘𝑅)))
2721, 26mpbir 233 1 (𝜑 → ( I ↾ 𝑅) ⊆ (t*rec‘𝑅))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208   = wceq 1537  wcel 2114  wrex 3141  Vcvv 3496  wss 3938   cuni 4840   ciun 4921  cmpt 5148   I cid 5461  cres 5559  Rel wrel 5562  cfv 6357  (class class class)co 7158  0cc0 10539  0cn0 11900  𝑟crelexp 14381  t*reccrtrcl 14416
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-rep 5192  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463  ax-cnex 10595  ax-1cn 10597  ax-icn 10598  ax-addcl 10599  ax-mulcl 10601  ax-i2m1 10607
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-ral 3145  df-rex 3146  df-reu 3147  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-pss 3956  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-tp 4574  df-op 4576  df-uni 4841  df-iun 4923  df-br 5069  df-opab 5131  df-mpt 5149  df-tr 5175  df-id 5462  df-eprel 5467  df-po 5476  df-so 5477  df-fr 5516  df-we 5518  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-pred 6150  df-ord 6196  df-on 6197  df-lim 6198  df-suc 6199  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-ov 7161  df-oprab 7162  df-mpo 7163  df-om 7583  df-wrecs 7949  df-recs 8010  df-rdg 8048  df-nn 11641  df-n0 11901  df-relexp 14382  df-rtrclrec 14417
This theorem is referenced by:  dfrtrcl2  14423
  Copyright terms: Public domain W3C validator