MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rtrclreclem2 Structured version   Visualization version   GIF version

Theorem rtrclreclem2 13741
Description: The reflexive, transitive closure is indeed a closure. (Contributed by Drahflow, 12-Nov-2015.) (Revised by RP, 30-May-2020.)
Hypothesis
Ref Expression
rtrclreclem.ex (𝜑𝑅 ∈ V)
Assertion
Ref Expression
rtrclreclem2 (𝜑𝑅 ⊆ (t*rec‘𝑅))

Proof of Theorem rtrclreclem2
Dummy variables 𝑟 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 1nn0 11260 . . . . 5 1 ∈ ℕ0
2 ssid 3608 . . . . . . 7 𝑅𝑅
32a1i 11 . . . . . 6 (𝜑𝑅𝑅)
4 rtrclreclem.ex . . . . . . 7 (𝜑𝑅 ∈ V)
54relexp1d 13713 . . . . . 6 (𝜑 → (𝑅𝑟1) = 𝑅)
63, 5sseqtr4d 3626 . . . . 5 (𝜑𝑅 ⊆ (𝑅𝑟1))
7 oveq2 6618 . . . . . . 7 (𝑛 = 1 → (𝑅𝑟𝑛) = (𝑅𝑟1))
87sseq2d 3617 . . . . . 6 (𝑛 = 1 → (𝑅 ⊆ (𝑅𝑟𝑛) ↔ 𝑅 ⊆ (𝑅𝑟1)))
98rspcev 3298 . . . . 5 ((1 ∈ ℕ0𝑅 ⊆ (𝑅𝑟1)) → ∃𝑛 ∈ ℕ0 𝑅 ⊆ (𝑅𝑟𝑛))
101, 6, 9sylancr 694 . . . 4 (𝜑 → ∃𝑛 ∈ ℕ0 𝑅 ⊆ (𝑅𝑟𝑛))
11 ssiun 4533 . . . 4 (∃𝑛 ∈ ℕ0 𝑅 ⊆ (𝑅𝑟𝑛) → 𝑅 𝑛 ∈ ℕ0 (𝑅𝑟𝑛))
1210, 11syl 17 . . 3 (𝜑𝑅 𝑛 ∈ ℕ0 (𝑅𝑟𝑛))
13 eqidd 2622 . . . 4 (𝜑 → (𝑟 ∈ V ↦ 𝑛 ∈ ℕ0 (𝑟𝑟𝑛)) = (𝑟 ∈ V ↦ 𝑛 ∈ ℕ0 (𝑟𝑟𝑛)))
14 oveq1 6617 . . . . . 6 (𝑟 = 𝑅 → (𝑟𝑟𝑛) = (𝑅𝑟𝑛))
1514iuneq2d 4518 . . . . 5 (𝑟 = 𝑅 𝑛 ∈ ℕ0 (𝑟𝑟𝑛) = 𝑛 ∈ ℕ0 (𝑅𝑟𝑛))
1615adantl 482 . . . 4 ((𝜑𝑟 = 𝑅) → 𝑛 ∈ ℕ0 (𝑟𝑟𝑛) = 𝑛 ∈ ℕ0 (𝑅𝑟𝑛))
17 nn0ex 11250 . . . . . 6 0 ∈ V
18 ovex 6638 . . . . . 6 (𝑅𝑟𝑛) ∈ V
1917, 18iunex 7100 . . . . 5 𝑛 ∈ ℕ0 (𝑅𝑟𝑛) ∈ V
2019a1i 11 . . . 4 (𝜑 𝑛 ∈ ℕ0 (𝑅𝑟𝑛) ∈ V)
2113, 16, 4, 20fvmptd 6250 . . 3 (𝜑 → ((𝑟 ∈ V ↦ 𝑛 ∈ ℕ0 (𝑟𝑟𝑛))‘𝑅) = 𝑛 ∈ ℕ0 (𝑅𝑟𝑛))
2212, 21sseqtr4d 3626 . 2 (𝜑𝑅 ⊆ ((𝑟 ∈ V ↦ 𝑛 ∈ ℕ0 (𝑟𝑟𝑛))‘𝑅))
23 df-rtrclrec 13738 . . 3 t*rec = (𝑟 ∈ V ↦ 𝑛 ∈ ℕ0 (𝑟𝑟𝑛))
24 fveq1 6152 . . . . 5 (t*rec = (𝑟 ∈ V ↦ 𝑛 ∈ ℕ0 (𝑟𝑟𝑛)) → (t*rec‘𝑅) = ((𝑟 ∈ V ↦ 𝑛 ∈ ℕ0 (𝑟𝑟𝑛))‘𝑅))
2524sseq2d 3617 . . . 4 (t*rec = (𝑟 ∈ V ↦ 𝑛 ∈ ℕ0 (𝑟𝑟𝑛)) → (𝑅 ⊆ (t*rec‘𝑅) ↔ 𝑅 ⊆ ((𝑟 ∈ V ↦ 𝑛 ∈ ℕ0 (𝑟𝑟𝑛))‘𝑅)))
2625imbi2d 330 . . 3 (t*rec = (𝑟 ∈ V ↦ 𝑛 ∈ ℕ0 (𝑟𝑟𝑛)) → ((𝜑𝑅 ⊆ (t*rec‘𝑅)) ↔ (𝜑𝑅 ⊆ ((𝑟 ∈ V ↦ 𝑛 ∈ ℕ0 (𝑟𝑟𝑛))‘𝑅))))
2723, 26ax-mp 5 . 2 ((𝜑𝑅 ⊆ (t*rec‘𝑅)) ↔ (𝜑𝑅 ⊆ ((𝑟 ∈ V ↦ 𝑛 ∈ ℕ0 (𝑟𝑟𝑛))‘𝑅)))
2822, 27mpbir 221 1 (𝜑𝑅 ⊆ (t*rec‘𝑅))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196   = wceq 1480  wcel 1987  wrex 2908  Vcvv 3189  wss 3559   ciun 4490  cmpt 4678  cfv 5852  (class class class)co 6610  1c1 9889  0cn0 11244  𝑟crelexp 13702  t*reccrtrcl 13737
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4736  ax-sep 4746  ax-nul 4754  ax-pow 4808  ax-pr 4872  ax-un 6909  ax-cnex 9944  ax-resscn 9945  ax-1cn 9946  ax-icn 9947  ax-addcl 9948  ax-addrcl 9949  ax-mulcl 9950  ax-mulrcl 9951  ax-mulcom 9952  ax-addass 9953  ax-mulass 9954  ax-distr 9955  ax-i2m1 9956  ax-1ne0 9957  ax-1rid 9958  ax-rnegex 9959  ax-rrecex 9960  ax-cnre 9961  ax-pre-lttri 9962  ax-pre-lttrn 9963  ax-pre-ltadd 9964  ax-pre-mulgt0 9965
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-reu 2914  df-rab 2916  df-v 3191  df-sbc 3422  df-csb 3519  df-dif 3562  df-un 3564  df-in 3566  df-ss 3573  df-pss 3575  df-nul 3897  df-if 4064  df-pw 4137  df-sn 4154  df-pr 4156  df-tp 4158  df-op 4160  df-uni 4408  df-iun 4492  df-br 4619  df-opab 4679  df-mpt 4680  df-tr 4718  df-eprel 4990  df-id 4994  df-po 5000  df-so 5001  df-fr 5038  df-we 5040  df-xp 5085  df-rel 5086  df-cnv 5087  df-co 5088  df-dm 5089  df-rn 5090  df-res 5091  df-ima 5092  df-pred 5644  df-ord 5690  df-on 5691  df-lim 5692  df-suc 5693  df-iota 5815  df-fun 5854  df-fn 5855  df-f 5856  df-f1 5857  df-fo 5858  df-f1o 5859  df-fv 5860  df-riota 6571  df-ov 6613  df-oprab 6614  df-mpt2 6615  df-om 7020  df-2nd 7121  df-wrecs 7359  df-recs 7420  df-rdg 7458  df-er 7694  df-en 7908  df-dom 7909  df-sdom 7910  df-pnf 10028  df-mnf 10029  df-xr 10030  df-ltxr 10031  df-le 10032  df-sub 10220  df-neg 10221  df-nn 10973  df-n0 11245  df-z 11330  df-uz 11640  df-seq 12750  df-relexp 13703  df-rtrclrec 13738
This theorem is referenced by:  dfrtrcl2  13744
  Copyright terms: Public domain W3C validator