MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ruclem1 Structured version   Visualization version   GIF version

Theorem ruclem1 14748
Description: Lemma for ruc 14760 (the reals are uncountable). Substitutions for the function 𝐷. (Contributed by Mario Carneiro, 28-May-2014.) (Revised by Fan Zheng, 6-Jun-2016.)
Hypotheses
Ref Expression
ruc.1 (𝜑𝐹:ℕ⟶ℝ)
ruc.2 (𝜑𝐷 = (𝑥 ∈ (ℝ × ℝ), 𝑦 ∈ ℝ ↦ (((1st𝑥) + (2nd𝑥)) / 2) / 𝑚if(𝑚 < 𝑦, ⟨(1st𝑥), 𝑚⟩, ⟨((𝑚 + (2nd𝑥)) / 2), (2nd𝑥)⟩)))
ruclem1.3 (𝜑𝐴 ∈ ℝ)
ruclem1.4 (𝜑𝐵 ∈ ℝ)
ruclem1.5 (𝜑𝑀 ∈ ℝ)
ruclem1.6 𝑋 = (1st ‘(⟨𝐴, 𝐵𝐷𝑀))
ruclem1.7 𝑌 = (2nd ‘(⟨𝐴, 𝐵𝐷𝑀))
Assertion
Ref Expression
ruclem1 (𝜑 → ((⟨𝐴, 𝐵𝐷𝑀) ∈ (ℝ × ℝ) ∧ 𝑋 = if(((𝐴 + 𝐵) / 2) < 𝑀, 𝐴, ((((𝐴 + 𝐵) / 2) + 𝐵) / 2)) ∧ 𝑌 = if(((𝐴 + 𝐵) / 2) < 𝑀, ((𝐴 + 𝐵) / 2), 𝐵)))
Distinct variable groups:   𝑥,𝑚,𝑦,𝐴   𝐵,𝑚,𝑥,𝑦   𝑚,𝐹,𝑥,𝑦   𝑚,𝑀,𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑚)   𝐷(𝑥,𝑦,𝑚)   𝑋(𝑥,𝑦,𝑚)   𝑌(𝑥,𝑦,𝑚)

Proof of Theorem ruclem1
StepHypRef Expression
1 ruc.2 . . . . . 6 (𝜑𝐷 = (𝑥 ∈ (ℝ × ℝ), 𝑦 ∈ ℝ ↦ (((1st𝑥) + (2nd𝑥)) / 2) / 𝑚if(𝑚 < 𝑦, ⟨(1st𝑥), 𝑚⟩, ⟨((𝑚 + (2nd𝑥)) / 2), (2nd𝑥)⟩)))
21oveqd 6544 . . . . 5 (𝜑 → (⟨𝐴, 𝐵𝐷𝑀) = (⟨𝐴, 𝐵⟩(𝑥 ∈ (ℝ × ℝ), 𝑦 ∈ ℝ ↦ (((1st𝑥) + (2nd𝑥)) / 2) / 𝑚if(𝑚 < 𝑦, ⟨(1st𝑥), 𝑚⟩, ⟨((𝑚 + (2nd𝑥)) / 2), (2nd𝑥)⟩))𝑀))
3 ruclem1.3 . . . . . . 7 (𝜑𝐴 ∈ ℝ)
4 ruclem1.4 . . . . . . 7 (𝜑𝐵 ∈ ℝ)
5 opelxpi 5062 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ⟨𝐴, 𝐵⟩ ∈ (ℝ × ℝ))
63, 4, 5syl2anc 690 . . . . . 6 (𝜑 → ⟨𝐴, 𝐵⟩ ∈ (ℝ × ℝ))
7 ruclem1.5 . . . . . 6 (𝜑𝑀 ∈ ℝ)
8 simpr 475 . . . . . . . . . . 11 ((𝑥 = ⟨𝐴, 𝐵⟩ ∧ 𝑦 = 𝑀) → 𝑦 = 𝑀)
98breq2d 4589 . . . . . . . . . 10 ((𝑥 = ⟨𝐴, 𝐵⟩ ∧ 𝑦 = 𝑀) → (𝑚 < 𝑦𝑚 < 𝑀))
10 simpl 471 . . . . . . . . . . . 12 ((𝑥 = ⟨𝐴, 𝐵⟩ ∧ 𝑦 = 𝑀) → 𝑥 = ⟨𝐴, 𝐵⟩)
1110fveq2d 6092 . . . . . . . . . . 11 ((𝑥 = ⟨𝐴, 𝐵⟩ ∧ 𝑦 = 𝑀) → (1st𝑥) = (1st ‘⟨𝐴, 𝐵⟩))
1211opeq1d 4340 . . . . . . . . . 10 ((𝑥 = ⟨𝐴, 𝐵⟩ ∧ 𝑦 = 𝑀) → ⟨(1st𝑥), 𝑚⟩ = ⟨(1st ‘⟨𝐴, 𝐵⟩), 𝑚⟩)
1310fveq2d 6092 . . . . . . . . . . . . 13 ((𝑥 = ⟨𝐴, 𝐵⟩ ∧ 𝑦 = 𝑀) → (2nd𝑥) = (2nd ‘⟨𝐴, 𝐵⟩))
1413oveq2d 6543 . . . . . . . . . . . 12 ((𝑥 = ⟨𝐴, 𝐵⟩ ∧ 𝑦 = 𝑀) → (𝑚 + (2nd𝑥)) = (𝑚 + (2nd ‘⟨𝐴, 𝐵⟩)))
1514oveq1d 6542 . . . . . . . . . . 11 ((𝑥 = ⟨𝐴, 𝐵⟩ ∧ 𝑦 = 𝑀) → ((𝑚 + (2nd𝑥)) / 2) = ((𝑚 + (2nd ‘⟨𝐴, 𝐵⟩)) / 2))
1615, 13opeq12d 4342 . . . . . . . . . 10 ((𝑥 = ⟨𝐴, 𝐵⟩ ∧ 𝑦 = 𝑀) → ⟨((𝑚 + (2nd𝑥)) / 2), (2nd𝑥)⟩ = ⟨((𝑚 + (2nd ‘⟨𝐴, 𝐵⟩)) / 2), (2nd ‘⟨𝐴, 𝐵⟩)⟩)
179, 12, 16ifbieq12d 4062 . . . . . . . . 9 ((𝑥 = ⟨𝐴, 𝐵⟩ ∧ 𝑦 = 𝑀) → if(𝑚 < 𝑦, ⟨(1st𝑥), 𝑚⟩, ⟨((𝑚 + (2nd𝑥)) / 2), (2nd𝑥)⟩) = if(𝑚 < 𝑀, ⟨(1st ‘⟨𝐴, 𝐵⟩), 𝑚⟩, ⟨((𝑚 + (2nd ‘⟨𝐴, 𝐵⟩)) / 2), (2nd ‘⟨𝐴, 𝐵⟩)⟩))
1817csbeq2dv 3943 . . . . . . . 8 ((𝑥 = ⟨𝐴, 𝐵⟩ ∧ 𝑦 = 𝑀) → (((1st𝑥) + (2nd𝑥)) / 2) / 𝑚if(𝑚 < 𝑦, ⟨(1st𝑥), 𝑚⟩, ⟨((𝑚 + (2nd𝑥)) / 2), (2nd𝑥)⟩) = (((1st𝑥) + (2nd𝑥)) / 2) / 𝑚if(𝑚 < 𝑀, ⟨(1st ‘⟨𝐴, 𝐵⟩), 𝑚⟩, ⟨((𝑚 + (2nd ‘⟨𝐴, 𝐵⟩)) / 2), (2nd ‘⟨𝐴, 𝐵⟩)⟩))
1911, 13oveq12d 6545 . . . . . . . . . 10 ((𝑥 = ⟨𝐴, 𝐵⟩ ∧ 𝑦 = 𝑀) → ((1st𝑥) + (2nd𝑥)) = ((1st ‘⟨𝐴, 𝐵⟩) + (2nd ‘⟨𝐴, 𝐵⟩)))
2019oveq1d 6542 . . . . . . . . 9 ((𝑥 = ⟨𝐴, 𝐵⟩ ∧ 𝑦 = 𝑀) → (((1st𝑥) + (2nd𝑥)) / 2) = (((1st ‘⟨𝐴, 𝐵⟩) + (2nd ‘⟨𝐴, 𝐵⟩)) / 2))
2120csbeq1d 3505 . . . . . . . 8 ((𝑥 = ⟨𝐴, 𝐵⟩ ∧ 𝑦 = 𝑀) → (((1st𝑥) + (2nd𝑥)) / 2) / 𝑚if(𝑚 < 𝑀, ⟨(1st ‘⟨𝐴, 𝐵⟩), 𝑚⟩, ⟨((𝑚 + (2nd ‘⟨𝐴, 𝐵⟩)) / 2), (2nd ‘⟨𝐴, 𝐵⟩)⟩) = (((1st ‘⟨𝐴, 𝐵⟩) + (2nd ‘⟨𝐴, 𝐵⟩)) / 2) / 𝑚if(𝑚 < 𝑀, ⟨(1st ‘⟨𝐴, 𝐵⟩), 𝑚⟩, ⟨((𝑚 + (2nd ‘⟨𝐴, 𝐵⟩)) / 2), (2nd ‘⟨𝐴, 𝐵⟩)⟩))
2218, 21eqtrd 2643 . . . . . . 7 ((𝑥 = ⟨𝐴, 𝐵⟩ ∧ 𝑦 = 𝑀) → (((1st𝑥) + (2nd𝑥)) / 2) / 𝑚if(𝑚 < 𝑦, ⟨(1st𝑥), 𝑚⟩, ⟨((𝑚 + (2nd𝑥)) / 2), (2nd𝑥)⟩) = (((1st ‘⟨𝐴, 𝐵⟩) + (2nd ‘⟨𝐴, 𝐵⟩)) / 2) / 𝑚if(𝑚 < 𝑀, ⟨(1st ‘⟨𝐴, 𝐵⟩), 𝑚⟩, ⟨((𝑚 + (2nd ‘⟨𝐴, 𝐵⟩)) / 2), (2nd ‘⟨𝐴, 𝐵⟩)⟩))
23 eqid 2609 . . . . . . 7 (𝑥 ∈ (ℝ × ℝ), 𝑦 ∈ ℝ ↦ (((1st𝑥) + (2nd𝑥)) / 2) / 𝑚if(𝑚 < 𝑦, ⟨(1st𝑥), 𝑚⟩, ⟨((𝑚 + (2nd𝑥)) / 2), (2nd𝑥)⟩)) = (𝑥 ∈ (ℝ × ℝ), 𝑦 ∈ ℝ ↦ (((1st𝑥) + (2nd𝑥)) / 2) / 𝑚if(𝑚 < 𝑦, ⟨(1st𝑥), 𝑚⟩, ⟨((𝑚 + (2nd𝑥)) / 2), (2nd𝑥)⟩))
24 opex 4853 . . . . . . . . 9 ⟨(1st ‘⟨𝐴, 𝐵⟩), 𝑚⟩ ∈ V
25 opex 4853 . . . . . . . . 9 ⟨((𝑚 + (2nd ‘⟨𝐴, 𝐵⟩)) / 2), (2nd ‘⟨𝐴, 𝐵⟩)⟩ ∈ V
2624, 25ifex 4105 . . . . . . . 8 if(𝑚 < 𝑀, ⟨(1st ‘⟨𝐴, 𝐵⟩), 𝑚⟩, ⟨((𝑚 + (2nd ‘⟨𝐴, 𝐵⟩)) / 2), (2nd ‘⟨𝐴, 𝐵⟩)⟩) ∈ V
2726csbex 4716 . . . . . . 7 (((1st ‘⟨𝐴, 𝐵⟩) + (2nd ‘⟨𝐴, 𝐵⟩)) / 2) / 𝑚if(𝑚 < 𝑀, ⟨(1st ‘⟨𝐴, 𝐵⟩), 𝑚⟩, ⟨((𝑚 + (2nd ‘⟨𝐴, 𝐵⟩)) / 2), (2nd ‘⟨𝐴, 𝐵⟩)⟩) ∈ V
2822, 23, 27ovmpt2a 6667 . . . . . 6 ((⟨𝐴, 𝐵⟩ ∈ (ℝ × ℝ) ∧ 𝑀 ∈ ℝ) → (⟨𝐴, 𝐵⟩(𝑥 ∈ (ℝ × ℝ), 𝑦 ∈ ℝ ↦ (((1st𝑥) + (2nd𝑥)) / 2) / 𝑚if(𝑚 < 𝑦, ⟨(1st𝑥), 𝑚⟩, ⟨((𝑚 + (2nd𝑥)) / 2), (2nd𝑥)⟩))𝑀) = (((1st ‘⟨𝐴, 𝐵⟩) + (2nd ‘⟨𝐴, 𝐵⟩)) / 2) / 𝑚if(𝑚 < 𝑀, ⟨(1st ‘⟨𝐴, 𝐵⟩), 𝑚⟩, ⟨((𝑚 + (2nd ‘⟨𝐴, 𝐵⟩)) / 2), (2nd ‘⟨𝐴, 𝐵⟩)⟩))
296, 7, 28syl2anc 690 . . . . 5 (𝜑 → (⟨𝐴, 𝐵⟩(𝑥 ∈ (ℝ × ℝ), 𝑦 ∈ ℝ ↦ (((1st𝑥) + (2nd𝑥)) / 2) / 𝑚if(𝑚 < 𝑦, ⟨(1st𝑥), 𝑚⟩, ⟨((𝑚 + (2nd𝑥)) / 2), (2nd𝑥)⟩))𝑀) = (((1st ‘⟨𝐴, 𝐵⟩) + (2nd ‘⟨𝐴, 𝐵⟩)) / 2) / 𝑚if(𝑚 < 𝑀, ⟨(1st ‘⟨𝐴, 𝐵⟩), 𝑚⟩, ⟨((𝑚 + (2nd ‘⟨𝐴, 𝐵⟩)) / 2), (2nd ‘⟨𝐴, 𝐵⟩)⟩))
302, 29eqtrd 2643 . . . 4 (𝜑 → (⟨𝐴, 𝐵𝐷𝑀) = (((1st ‘⟨𝐴, 𝐵⟩) + (2nd ‘⟨𝐴, 𝐵⟩)) / 2) / 𝑚if(𝑚 < 𝑀, ⟨(1st ‘⟨𝐴, 𝐵⟩), 𝑚⟩, ⟨((𝑚 + (2nd ‘⟨𝐴, 𝐵⟩)) / 2), (2nd ‘⟨𝐴, 𝐵⟩)⟩))
31 op1stg 7049 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (1st ‘⟨𝐴, 𝐵⟩) = 𝐴)
323, 4, 31syl2anc 690 . . . . . . . 8 (𝜑 → (1st ‘⟨𝐴, 𝐵⟩) = 𝐴)
33 op2ndg 7050 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (2nd ‘⟨𝐴, 𝐵⟩) = 𝐵)
343, 4, 33syl2anc 690 . . . . . . . 8 (𝜑 → (2nd ‘⟨𝐴, 𝐵⟩) = 𝐵)
3532, 34oveq12d 6545 . . . . . . 7 (𝜑 → ((1st ‘⟨𝐴, 𝐵⟩) + (2nd ‘⟨𝐴, 𝐵⟩)) = (𝐴 + 𝐵))
3635oveq1d 6542 . . . . . 6 (𝜑 → (((1st ‘⟨𝐴, 𝐵⟩) + (2nd ‘⟨𝐴, 𝐵⟩)) / 2) = ((𝐴 + 𝐵) / 2))
3736csbeq1d 3505 . . . . 5 (𝜑(((1st ‘⟨𝐴, 𝐵⟩) + (2nd ‘⟨𝐴, 𝐵⟩)) / 2) / 𝑚if(𝑚 < 𝑀, ⟨(1st ‘⟨𝐴, 𝐵⟩), 𝑚⟩, ⟨((𝑚 + (2nd ‘⟨𝐴, 𝐵⟩)) / 2), (2nd ‘⟨𝐴, 𝐵⟩)⟩) = ((𝐴 + 𝐵) / 2) / 𝑚if(𝑚 < 𝑀, ⟨(1st ‘⟨𝐴, 𝐵⟩), 𝑚⟩, ⟨((𝑚 + (2nd ‘⟨𝐴, 𝐵⟩)) / 2), (2nd ‘⟨𝐴, 𝐵⟩)⟩))
38 ovex 6555 . . . . . . 7 ((𝐴 + 𝐵) / 2) ∈ V
39 breq1 4580 . . . . . . . 8 (𝑚 = ((𝐴 + 𝐵) / 2) → (𝑚 < 𝑀 ↔ ((𝐴 + 𝐵) / 2) < 𝑀))
40 opeq2 4335 . . . . . . . 8 (𝑚 = ((𝐴 + 𝐵) / 2) → ⟨(1st ‘⟨𝐴, 𝐵⟩), 𝑚⟩ = ⟨(1st ‘⟨𝐴, 𝐵⟩), ((𝐴 + 𝐵) / 2)⟩)
41 oveq1 6534 . . . . . . . . . 10 (𝑚 = ((𝐴 + 𝐵) / 2) → (𝑚 + (2nd ‘⟨𝐴, 𝐵⟩)) = (((𝐴 + 𝐵) / 2) + (2nd ‘⟨𝐴, 𝐵⟩)))
4241oveq1d 6542 . . . . . . . . 9 (𝑚 = ((𝐴 + 𝐵) / 2) → ((𝑚 + (2nd ‘⟨𝐴, 𝐵⟩)) / 2) = ((((𝐴 + 𝐵) / 2) + (2nd ‘⟨𝐴, 𝐵⟩)) / 2))
4342opeq1d 4340 . . . . . . . 8 (𝑚 = ((𝐴 + 𝐵) / 2) → ⟨((𝑚 + (2nd ‘⟨𝐴, 𝐵⟩)) / 2), (2nd ‘⟨𝐴, 𝐵⟩)⟩ = ⟨((((𝐴 + 𝐵) / 2) + (2nd ‘⟨𝐴, 𝐵⟩)) / 2), (2nd ‘⟨𝐴, 𝐵⟩)⟩)
4439, 40, 43ifbieq12d 4062 . . . . . . 7 (𝑚 = ((𝐴 + 𝐵) / 2) → if(𝑚 < 𝑀, ⟨(1st ‘⟨𝐴, 𝐵⟩), 𝑚⟩, ⟨((𝑚 + (2nd ‘⟨𝐴, 𝐵⟩)) / 2), (2nd ‘⟨𝐴, 𝐵⟩)⟩) = if(((𝐴 + 𝐵) / 2) < 𝑀, ⟨(1st ‘⟨𝐴, 𝐵⟩), ((𝐴 + 𝐵) / 2)⟩, ⟨((((𝐴 + 𝐵) / 2) + (2nd ‘⟨𝐴, 𝐵⟩)) / 2), (2nd ‘⟨𝐴, 𝐵⟩)⟩))
4538, 44csbie 3524 . . . . . 6 ((𝐴 + 𝐵) / 2) / 𝑚if(𝑚 < 𝑀, ⟨(1st ‘⟨𝐴, 𝐵⟩), 𝑚⟩, ⟨((𝑚 + (2nd ‘⟨𝐴, 𝐵⟩)) / 2), (2nd ‘⟨𝐴, 𝐵⟩)⟩) = if(((𝐴 + 𝐵) / 2) < 𝑀, ⟨(1st ‘⟨𝐴, 𝐵⟩), ((𝐴 + 𝐵) / 2)⟩, ⟨((((𝐴 + 𝐵) / 2) + (2nd ‘⟨𝐴, 𝐵⟩)) / 2), (2nd ‘⟨𝐴, 𝐵⟩)⟩)
4632opeq1d 4340 . . . . . . 7 (𝜑 → ⟨(1st ‘⟨𝐴, 𝐵⟩), ((𝐴 + 𝐵) / 2)⟩ = ⟨𝐴, ((𝐴 + 𝐵) / 2)⟩)
4734oveq2d 6543 . . . . . . . . 9 (𝜑 → (((𝐴 + 𝐵) / 2) + (2nd ‘⟨𝐴, 𝐵⟩)) = (((𝐴 + 𝐵) / 2) + 𝐵))
4847oveq1d 6542 . . . . . . . 8 (𝜑 → ((((𝐴 + 𝐵) / 2) + (2nd ‘⟨𝐴, 𝐵⟩)) / 2) = ((((𝐴 + 𝐵) / 2) + 𝐵) / 2))
4948, 34opeq12d 4342 . . . . . . 7 (𝜑 → ⟨((((𝐴 + 𝐵) / 2) + (2nd ‘⟨𝐴, 𝐵⟩)) / 2), (2nd ‘⟨𝐴, 𝐵⟩)⟩ = ⟨((((𝐴 + 𝐵) / 2) + 𝐵) / 2), 𝐵⟩)
5046, 49ifeq12d 4055 . . . . . 6 (𝜑 → if(((𝐴 + 𝐵) / 2) < 𝑀, ⟨(1st ‘⟨𝐴, 𝐵⟩), ((𝐴 + 𝐵) / 2)⟩, ⟨((((𝐴 + 𝐵) / 2) + (2nd ‘⟨𝐴, 𝐵⟩)) / 2), (2nd ‘⟨𝐴, 𝐵⟩)⟩) = if(((𝐴 + 𝐵) / 2) < 𝑀, ⟨𝐴, ((𝐴 + 𝐵) / 2)⟩, ⟨((((𝐴 + 𝐵) / 2) + 𝐵) / 2), 𝐵⟩))
5145, 50syl5eq 2655 . . . . 5 (𝜑((𝐴 + 𝐵) / 2) / 𝑚if(𝑚 < 𝑀, ⟨(1st ‘⟨𝐴, 𝐵⟩), 𝑚⟩, ⟨((𝑚 + (2nd ‘⟨𝐴, 𝐵⟩)) / 2), (2nd ‘⟨𝐴, 𝐵⟩)⟩) = if(((𝐴 + 𝐵) / 2) < 𝑀, ⟨𝐴, ((𝐴 + 𝐵) / 2)⟩, ⟨((((𝐴 + 𝐵) / 2) + 𝐵) / 2), 𝐵⟩))
5237, 51eqtrd 2643 . . . 4 (𝜑(((1st ‘⟨𝐴, 𝐵⟩) + (2nd ‘⟨𝐴, 𝐵⟩)) / 2) / 𝑚if(𝑚 < 𝑀, ⟨(1st ‘⟨𝐴, 𝐵⟩), 𝑚⟩, ⟨((𝑚 + (2nd ‘⟨𝐴, 𝐵⟩)) / 2), (2nd ‘⟨𝐴, 𝐵⟩)⟩) = if(((𝐴 + 𝐵) / 2) < 𝑀, ⟨𝐴, ((𝐴 + 𝐵) / 2)⟩, ⟨((((𝐴 + 𝐵) / 2) + 𝐵) / 2), 𝐵⟩))
5330, 52eqtrd 2643 . . 3 (𝜑 → (⟨𝐴, 𝐵𝐷𝑀) = if(((𝐴 + 𝐵) / 2) < 𝑀, ⟨𝐴, ((𝐴 + 𝐵) / 2)⟩, ⟨((((𝐴 + 𝐵) / 2) + 𝐵) / 2), 𝐵⟩))
543, 4readdcld 9926 . . . . . 6 (𝜑 → (𝐴 + 𝐵) ∈ ℝ)
5554rehalfcld 11129 . . . . 5 (𝜑 → ((𝐴 + 𝐵) / 2) ∈ ℝ)
56 opelxpi 5062 . . . . 5 ((𝐴 ∈ ℝ ∧ ((𝐴 + 𝐵) / 2) ∈ ℝ) → ⟨𝐴, ((𝐴 + 𝐵) / 2)⟩ ∈ (ℝ × ℝ))
573, 55, 56syl2anc 690 . . . 4 (𝜑 → ⟨𝐴, ((𝐴 + 𝐵) / 2)⟩ ∈ (ℝ × ℝ))
5855, 4readdcld 9926 . . . . . 6 (𝜑 → (((𝐴 + 𝐵) / 2) + 𝐵) ∈ ℝ)
5958rehalfcld 11129 . . . . 5 (𝜑 → ((((𝐴 + 𝐵) / 2) + 𝐵) / 2) ∈ ℝ)
60 opelxpi 5062 . . . . 5 ((((((𝐴 + 𝐵) / 2) + 𝐵) / 2) ∈ ℝ ∧ 𝐵 ∈ ℝ) → ⟨((((𝐴 + 𝐵) / 2) + 𝐵) / 2), 𝐵⟩ ∈ (ℝ × ℝ))
6159, 4, 60syl2anc 690 . . . 4 (𝜑 → ⟨((((𝐴 + 𝐵) / 2) + 𝐵) / 2), 𝐵⟩ ∈ (ℝ × ℝ))
6257, 61ifcld 4080 . . 3 (𝜑 → if(((𝐴 + 𝐵) / 2) < 𝑀, ⟨𝐴, ((𝐴 + 𝐵) / 2)⟩, ⟨((((𝐴 + 𝐵) / 2) + 𝐵) / 2), 𝐵⟩) ∈ (ℝ × ℝ))
6353, 62eqeltrd 2687 . 2 (𝜑 → (⟨𝐴, 𝐵𝐷𝑀) ∈ (ℝ × ℝ))
64 ruclem1.6 . . 3 𝑋 = (1st ‘(⟨𝐴, 𝐵𝐷𝑀))
6553fveq2d 6092 . . . 4 (𝜑 → (1st ‘(⟨𝐴, 𝐵𝐷𝑀)) = (1st ‘if(((𝐴 + 𝐵) / 2) < 𝑀, ⟨𝐴, ((𝐴 + 𝐵) / 2)⟩, ⟨((((𝐴 + 𝐵) / 2) + 𝐵) / 2), 𝐵⟩)))
66 fvif 6099 . . . . 5 (1st ‘if(((𝐴 + 𝐵) / 2) < 𝑀, ⟨𝐴, ((𝐴 + 𝐵) / 2)⟩, ⟨((((𝐴 + 𝐵) / 2) + 𝐵) / 2), 𝐵⟩)) = if(((𝐴 + 𝐵) / 2) < 𝑀, (1st ‘⟨𝐴, ((𝐴 + 𝐵) / 2)⟩), (1st ‘⟨((((𝐴 + 𝐵) / 2) + 𝐵) / 2), 𝐵⟩))
67 op1stg 7049 . . . . . . 7 ((𝐴 ∈ ℝ ∧ ((𝐴 + 𝐵) / 2) ∈ V) → (1st ‘⟨𝐴, ((𝐴 + 𝐵) / 2)⟩) = 𝐴)
683, 38, 67sylancl 692 . . . . . 6 (𝜑 → (1st ‘⟨𝐴, ((𝐴 + 𝐵) / 2)⟩) = 𝐴)
69 ovex 6555 . . . . . . 7 ((((𝐴 + 𝐵) / 2) + 𝐵) / 2) ∈ V
70 op1stg 7049 . . . . . . 7 ((((((𝐴 + 𝐵) / 2) + 𝐵) / 2) ∈ V ∧ 𝐵 ∈ ℝ) → (1st ‘⟨((((𝐴 + 𝐵) / 2) + 𝐵) / 2), 𝐵⟩) = ((((𝐴 + 𝐵) / 2) + 𝐵) / 2))
7169, 4, 70sylancr 693 . . . . . 6 (𝜑 → (1st ‘⟨((((𝐴 + 𝐵) / 2) + 𝐵) / 2), 𝐵⟩) = ((((𝐴 + 𝐵) / 2) + 𝐵) / 2))
7268, 71ifeq12d 4055 . . . . 5 (𝜑 → if(((𝐴 + 𝐵) / 2) < 𝑀, (1st ‘⟨𝐴, ((𝐴 + 𝐵) / 2)⟩), (1st ‘⟨((((𝐴 + 𝐵) / 2) + 𝐵) / 2), 𝐵⟩)) = if(((𝐴 + 𝐵) / 2) < 𝑀, 𝐴, ((((𝐴 + 𝐵) / 2) + 𝐵) / 2)))
7366, 72syl5eq 2655 . . . 4 (𝜑 → (1st ‘if(((𝐴 + 𝐵) / 2) < 𝑀, ⟨𝐴, ((𝐴 + 𝐵) / 2)⟩, ⟨((((𝐴 + 𝐵) / 2) + 𝐵) / 2), 𝐵⟩)) = if(((𝐴 + 𝐵) / 2) < 𝑀, 𝐴, ((((𝐴 + 𝐵) / 2) + 𝐵) / 2)))
7465, 73eqtrd 2643 . . 3 (𝜑 → (1st ‘(⟨𝐴, 𝐵𝐷𝑀)) = if(((𝐴 + 𝐵) / 2) < 𝑀, 𝐴, ((((𝐴 + 𝐵) / 2) + 𝐵) / 2)))
7564, 74syl5eq 2655 . 2 (𝜑𝑋 = if(((𝐴 + 𝐵) / 2) < 𝑀, 𝐴, ((((𝐴 + 𝐵) / 2) + 𝐵) / 2)))
76 ruclem1.7 . . 3 𝑌 = (2nd ‘(⟨𝐴, 𝐵𝐷𝑀))
7753fveq2d 6092 . . . 4 (𝜑 → (2nd ‘(⟨𝐴, 𝐵𝐷𝑀)) = (2nd ‘if(((𝐴 + 𝐵) / 2) < 𝑀, ⟨𝐴, ((𝐴 + 𝐵) / 2)⟩, ⟨((((𝐴 + 𝐵) / 2) + 𝐵) / 2), 𝐵⟩)))
78 fvif 6099 . . . . 5 (2nd ‘if(((𝐴 + 𝐵) / 2) < 𝑀, ⟨𝐴, ((𝐴 + 𝐵) / 2)⟩, ⟨((((𝐴 + 𝐵) / 2) + 𝐵) / 2), 𝐵⟩)) = if(((𝐴 + 𝐵) / 2) < 𝑀, (2nd ‘⟨𝐴, ((𝐴 + 𝐵) / 2)⟩), (2nd ‘⟨((((𝐴 + 𝐵) / 2) + 𝐵) / 2), 𝐵⟩))
79 op2ndg 7050 . . . . . . 7 ((𝐴 ∈ ℝ ∧ ((𝐴 + 𝐵) / 2) ∈ V) → (2nd ‘⟨𝐴, ((𝐴 + 𝐵) / 2)⟩) = ((𝐴 + 𝐵) / 2))
803, 38, 79sylancl 692 . . . . . 6 (𝜑 → (2nd ‘⟨𝐴, ((𝐴 + 𝐵) / 2)⟩) = ((𝐴 + 𝐵) / 2))
81 op2ndg 7050 . . . . . . 7 ((((((𝐴 + 𝐵) / 2) + 𝐵) / 2) ∈ V ∧ 𝐵 ∈ ℝ) → (2nd ‘⟨((((𝐴 + 𝐵) / 2) + 𝐵) / 2), 𝐵⟩) = 𝐵)
8269, 4, 81sylancr 693 . . . . . 6 (𝜑 → (2nd ‘⟨((((𝐴 + 𝐵) / 2) + 𝐵) / 2), 𝐵⟩) = 𝐵)
8380, 82ifeq12d 4055 . . . . 5 (𝜑 → if(((𝐴 + 𝐵) / 2) < 𝑀, (2nd ‘⟨𝐴, ((𝐴 + 𝐵) / 2)⟩), (2nd ‘⟨((((𝐴 + 𝐵) / 2) + 𝐵) / 2), 𝐵⟩)) = if(((𝐴 + 𝐵) / 2) < 𝑀, ((𝐴 + 𝐵) / 2), 𝐵))
8478, 83syl5eq 2655 . . . 4 (𝜑 → (2nd ‘if(((𝐴 + 𝐵) / 2) < 𝑀, ⟨𝐴, ((𝐴 + 𝐵) / 2)⟩, ⟨((((𝐴 + 𝐵) / 2) + 𝐵) / 2), 𝐵⟩)) = if(((𝐴 + 𝐵) / 2) < 𝑀, ((𝐴 + 𝐵) / 2), 𝐵))
8577, 84eqtrd 2643 . . 3 (𝜑 → (2nd ‘(⟨𝐴, 𝐵𝐷𝑀)) = if(((𝐴 + 𝐵) / 2) < 𝑀, ((𝐴 + 𝐵) / 2), 𝐵))
8676, 85syl5eq 2655 . 2 (𝜑𝑌 = if(((𝐴 + 𝐵) / 2) < 𝑀, ((𝐴 + 𝐵) / 2), 𝐵))
8763, 75, 863jca 1234 1 (𝜑 → ((⟨𝐴, 𝐵𝐷𝑀) ∈ (ℝ × ℝ) ∧ 𝑋 = if(((𝐴 + 𝐵) / 2) < 𝑀, 𝐴, ((((𝐴 + 𝐵) / 2) + 𝐵) / 2)) ∧ 𝑌 = if(((𝐴 + 𝐵) / 2) < 𝑀, ((𝐴 + 𝐵) / 2), 𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 382  w3a 1030   = wceq 1474  wcel 1976  Vcvv 3172  csb 3498  ifcif 4035  cop 4130   class class class wbr 4577   × cxp 5026  wf 5786  cfv 5790  (class class class)co 6527  cmpt2 6529  1st c1st 7035  2nd c2nd 7036  cr 9792   + caddc 9796   < clt 9931   / cdiv 10536  cn 10870  2c2 10920
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1712  ax-4 1727  ax-5 1826  ax-6 1874  ax-7 1921  ax-8 1978  ax-9 1985  ax-10 2005  ax-11 2020  ax-12 2033  ax-13 2233  ax-ext 2589  ax-sep 4703  ax-nul 4712  ax-pow 4764  ax-pr 4828  ax-un 6825  ax-resscn 9850  ax-1cn 9851  ax-icn 9852  ax-addcl 9853  ax-addrcl 9854  ax-mulcl 9855  ax-mulrcl 9856  ax-mulcom 9857  ax-addass 9858  ax-mulass 9859  ax-distr 9860  ax-i2m1 9861  ax-1ne0 9862  ax-1rid 9863  ax-rnegex 9864  ax-rrecex 9865  ax-cnre 9866  ax-pre-lttri 9867  ax-pre-lttrn 9868  ax-pre-ltadd 9869  ax-pre-mulgt0 9870
This theorem depends on definitions:  df-bi 195  df-or 383  df-an 384  df-3or 1031  df-3an 1032  df-tru 1477  df-fal 1480  df-ex 1695  df-nf 1700  df-sb 1867  df-eu 2461  df-mo 2462  df-clab 2596  df-cleq 2602  df-clel 2605  df-nfc 2739  df-ne 2781  df-nel 2782  df-ral 2900  df-rex 2901  df-reu 2902  df-rmo 2903  df-rab 2904  df-v 3174  df-sbc 3402  df-csb 3499  df-dif 3542  df-un 3544  df-in 3546  df-ss 3553  df-nul 3874  df-if 4036  df-pw 4109  df-sn 4125  df-pr 4127  df-op 4131  df-uni 4367  df-br 4578  df-opab 4638  df-mpt 4639  df-id 4943  df-po 4949  df-so 4950  df-xp 5034  df-rel 5035  df-cnv 5036  df-co 5037  df-dm 5038  df-rn 5039  df-res 5040  df-ima 5041  df-iota 5754  df-fun 5792  df-fn 5793  df-f 5794  df-f1 5795  df-fo 5796  df-f1o 5797  df-fv 5798  df-riota 6489  df-ov 6530  df-oprab 6531  df-mpt2 6532  df-1st 7037  df-2nd 7038  df-er 7607  df-en 7820  df-dom 7821  df-sdom 7822  df-pnf 9933  df-mnf 9934  df-xr 9935  df-ltxr 9936  df-le 9937  df-sub 10120  df-neg 10121  df-div 10537  df-2 10929
This theorem is referenced by:  ruclem2  14749  ruclem3  14750  ruclem6  14752
  Copyright terms: Public domain W3C validator