MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ruclem12 Structured version   Visualization version   GIF version

Theorem ruclem12 15593
Description: Lemma for ruc 15595. The supremum of the increasing sequence 1st𝐺 is a real number that is not in the range of 𝐹. (Contributed by Mario Carneiro, 28-May-2014.)
Hypotheses
Ref Expression
ruc.1 (𝜑𝐹:ℕ⟶ℝ)
ruc.2 (𝜑𝐷 = (𝑥 ∈ (ℝ × ℝ), 𝑦 ∈ ℝ ↦ (((1st𝑥) + (2nd𝑥)) / 2) / 𝑚if(𝑚 < 𝑦, ⟨(1st𝑥), 𝑚⟩, ⟨((𝑚 + (2nd𝑥)) / 2), (2nd𝑥)⟩)))
ruc.4 𝐶 = ({⟨0, ⟨0, 1⟩⟩} ∪ 𝐹)
ruc.5 𝐺 = seq0(𝐷, 𝐶)
ruc.6 𝑆 = sup(ran (1st𝐺), ℝ, < )
Assertion
Ref Expression
ruclem12 (𝜑𝑆 ∈ (ℝ ∖ ran 𝐹))
Distinct variable groups:   𝑥,𝑚,𝑦,𝐹   𝑚,𝐺,𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑚)   𝐶(𝑥,𝑦,𝑚)   𝐷(𝑥,𝑦,𝑚)   𝑆(𝑥,𝑦,𝑚)

Proof of Theorem ruclem12
Dummy variables 𝑧 𝑛 𝑘 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ruc.6 . . 3 𝑆 = sup(ran (1st𝐺), ℝ, < )
2 ruc.1 . . . . . 6 (𝜑𝐹:ℕ⟶ℝ)
3 ruc.2 . . . . . 6 (𝜑𝐷 = (𝑥 ∈ (ℝ × ℝ), 𝑦 ∈ ℝ ↦ (((1st𝑥) + (2nd𝑥)) / 2) / 𝑚if(𝑚 < 𝑦, ⟨(1st𝑥), 𝑚⟩, ⟨((𝑚 + (2nd𝑥)) / 2), (2nd𝑥)⟩)))
4 ruc.4 . . . . . 6 𝐶 = ({⟨0, ⟨0, 1⟩⟩} ∪ 𝐹)
5 ruc.5 . . . . . 6 𝐺 = seq0(𝐷, 𝐶)
62, 3, 4, 5ruclem11 15592 . . . . 5 (𝜑 → (ran (1st𝐺) ⊆ ℝ ∧ ran (1st𝐺) ≠ ∅ ∧ ∀𝑧 ∈ ran (1st𝐺)𝑧 ≤ 1))
76simp1d 1138 . . . 4 (𝜑 → ran (1st𝐺) ⊆ ℝ)
86simp2d 1139 . . . 4 (𝜑 → ran (1st𝐺) ≠ ∅)
9 1re 10640 . . . . 5 1 ∈ ℝ
106simp3d 1140 . . . . 5 (𝜑 → ∀𝑧 ∈ ran (1st𝐺)𝑧 ≤ 1)
11 brralrspcev 5125 . . . . 5 ((1 ∈ ℝ ∧ ∀𝑧 ∈ ran (1st𝐺)𝑧 ≤ 1) → ∃𝑛 ∈ ℝ ∀𝑧 ∈ ran (1st𝐺)𝑧𝑛)
129, 10, 11sylancr 589 . . . 4 (𝜑 → ∃𝑛 ∈ ℝ ∀𝑧 ∈ ran (1st𝐺)𝑧𝑛)
137, 8, 12suprcld 11603 . . 3 (𝜑 → sup(ran (1st𝐺), ℝ, < ) ∈ ℝ)
141, 13eqeltrid 2917 . 2 (𝜑𝑆 ∈ ℝ)
152adantr 483 . . . . . . . . 9 ((𝜑𝑛 ∈ ℕ) → 𝐹:ℕ⟶ℝ)
163adantr 483 . . . . . . . . 9 ((𝜑𝑛 ∈ ℕ) → 𝐷 = (𝑥 ∈ (ℝ × ℝ), 𝑦 ∈ ℝ ↦ (((1st𝑥) + (2nd𝑥)) / 2) / 𝑚if(𝑚 < 𝑦, ⟨(1st𝑥), 𝑚⟩, ⟨((𝑚 + (2nd𝑥)) / 2), (2nd𝑥)⟩)))
172, 3, 4, 5ruclem6 15587 . . . . . . . . . . 11 (𝜑𝐺:ℕ0⟶(ℝ × ℝ))
18 nnm1nn0 11937 . . . . . . . . . . 11 (𝑛 ∈ ℕ → (𝑛 − 1) ∈ ℕ0)
19 ffvelrn 6848 . . . . . . . . . . 11 ((𝐺:ℕ0⟶(ℝ × ℝ) ∧ (𝑛 − 1) ∈ ℕ0) → (𝐺‘(𝑛 − 1)) ∈ (ℝ × ℝ))
2017, 18, 19syl2an 597 . . . . . . . . . 10 ((𝜑𝑛 ∈ ℕ) → (𝐺‘(𝑛 − 1)) ∈ (ℝ × ℝ))
21 xp1st 7720 . . . . . . . . . 10 ((𝐺‘(𝑛 − 1)) ∈ (ℝ × ℝ) → (1st ‘(𝐺‘(𝑛 − 1))) ∈ ℝ)
2220, 21syl 17 . . . . . . . . 9 ((𝜑𝑛 ∈ ℕ) → (1st ‘(𝐺‘(𝑛 − 1))) ∈ ℝ)
23 xp2nd 7721 . . . . . . . . . 10 ((𝐺‘(𝑛 − 1)) ∈ (ℝ × ℝ) → (2nd ‘(𝐺‘(𝑛 − 1))) ∈ ℝ)
2420, 23syl 17 . . . . . . . . 9 ((𝜑𝑛 ∈ ℕ) → (2nd ‘(𝐺‘(𝑛 − 1))) ∈ ℝ)
252ffvelrnda 6850 . . . . . . . . 9 ((𝜑𝑛 ∈ ℕ) → (𝐹𝑛) ∈ ℝ)
26 eqid 2821 . . . . . . . . 9 (1st ‘(⟨(1st ‘(𝐺‘(𝑛 − 1))), (2nd ‘(𝐺‘(𝑛 − 1)))⟩𝐷(𝐹𝑛))) = (1st ‘(⟨(1st ‘(𝐺‘(𝑛 − 1))), (2nd ‘(𝐺‘(𝑛 − 1)))⟩𝐷(𝐹𝑛)))
27 eqid 2821 . . . . . . . . 9 (2nd ‘(⟨(1st ‘(𝐺‘(𝑛 − 1))), (2nd ‘(𝐺‘(𝑛 − 1)))⟩𝐷(𝐹𝑛))) = (2nd ‘(⟨(1st ‘(𝐺‘(𝑛 − 1))), (2nd ‘(𝐺‘(𝑛 − 1)))⟩𝐷(𝐹𝑛)))
282, 3, 4, 5ruclem8 15589 . . . . . . . . . 10 ((𝜑 ∧ (𝑛 − 1) ∈ ℕ0) → (1st ‘(𝐺‘(𝑛 − 1))) < (2nd ‘(𝐺‘(𝑛 − 1))))
2918, 28sylan2 594 . . . . . . . . 9 ((𝜑𝑛 ∈ ℕ) → (1st ‘(𝐺‘(𝑛 − 1))) < (2nd ‘(𝐺‘(𝑛 − 1))))
3015, 16, 22, 24, 25, 26, 27, 29ruclem3 15585 . . . . . . . 8 ((𝜑𝑛 ∈ ℕ) → ((𝐹𝑛) < (1st ‘(⟨(1st ‘(𝐺‘(𝑛 − 1))), (2nd ‘(𝐺‘(𝑛 − 1)))⟩𝐷(𝐹𝑛))) ∨ (2nd ‘(⟨(1st ‘(𝐺‘(𝑛 − 1))), (2nd ‘(𝐺‘(𝑛 − 1)))⟩𝐷(𝐹𝑛))) < (𝐹𝑛)))
312, 3, 4, 5ruclem7 15588 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑛 − 1) ∈ ℕ0) → (𝐺‘((𝑛 − 1) + 1)) = ((𝐺‘(𝑛 − 1))𝐷(𝐹‘((𝑛 − 1) + 1))))
3218, 31sylan2 594 . . . . . . . . . . . 12 ((𝜑𝑛 ∈ ℕ) → (𝐺‘((𝑛 − 1) + 1)) = ((𝐺‘(𝑛 − 1))𝐷(𝐹‘((𝑛 − 1) + 1))))
33 nncn 11645 . . . . . . . . . . . . . . 15 (𝑛 ∈ ℕ → 𝑛 ∈ ℂ)
3433adantl 484 . . . . . . . . . . . . . 14 ((𝜑𝑛 ∈ ℕ) → 𝑛 ∈ ℂ)
35 ax-1cn 10594 . . . . . . . . . . . . . 14 1 ∈ ℂ
36 npcan 10894 . . . . . . . . . . . . . 14 ((𝑛 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝑛 − 1) + 1) = 𝑛)
3734, 35, 36sylancl 588 . . . . . . . . . . . . 13 ((𝜑𝑛 ∈ ℕ) → ((𝑛 − 1) + 1) = 𝑛)
3837fveq2d 6673 . . . . . . . . . . . 12 ((𝜑𝑛 ∈ ℕ) → (𝐺‘((𝑛 − 1) + 1)) = (𝐺𝑛))
39 1st2nd2 7727 . . . . . . . . . . . . . 14 ((𝐺‘(𝑛 − 1)) ∈ (ℝ × ℝ) → (𝐺‘(𝑛 − 1)) = ⟨(1st ‘(𝐺‘(𝑛 − 1))), (2nd ‘(𝐺‘(𝑛 − 1)))⟩)
4020, 39syl 17 . . . . . . . . . . . . 13 ((𝜑𝑛 ∈ ℕ) → (𝐺‘(𝑛 − 1)) = ⟨(1st ‘(𝐺‘(𝑛 − 1))), (2nd ‘(𝐺‘(𝑛 − 1)))⟩)
4137fveq2d 6673 . . . . . . . . . . . . 13 ((𝜑𝑛 ∈ ℕ) → (𝐹‘((𝑛 − 1) + 1)) = (𝐹𝑛))
4240, 41oveq12d 7173 . . . . . . . . . . . 12 ((𝜑𝑛 ∈ ℕ) → ((𝐺‘(𝑛 − 1))𝐷(𝐹‘((𝑛 − 1) + 1))) = (⟨(1st ‘(𝐺‘(𝑛 − 1))), (2nd ‘(𝐺‘(𝑛 − 1)))⟩𝐷(𝐹𝑛)))
4332, 38, 423eqtr3d 2864 . . . . . . . . . . 11 ((𝜑𝑛 ∈ ℕ) → (𝐺𝑛) = (⟨(1st ‘(𝐺‘(𝑛 − 1))), (2nd ‘(𝐺‘(𝑛 − 1)))⟩𝐷(𝐹𝑛)))
4443fveq2d 6673 . . . . . . . . . 10 ((𝜑𝑛 ∈ ℕ) → (1st ‘(𝐺𝑛)) = (1st ‘(⟨(1st ‘(𝐺‘(𝑛 − 1))), (2nd ‘(𝐺‘(𝑛 − 1)))⟩𝐷(𝐹𝑛))))
4544breq2d 5077 . . . . . . . . 9 ((𝜑𝑛 ∈ ℕ) → ((𝐹𝑛) < (1st ‘(𝐺𝑛)) ↔ (𝐹𝑛) < (1st ‘(⟨(1st ‘(𝐺‘(𝑛 − 1))), (2nd ‘(𝐺‘(𝑛 − 1)))⟩𝐷(𝐹𝑛)))))
4643fveq2d 6673 . . . . . . . . . 10 ((𝜑𝑛 ∈ ℕ) → (2nd ‘(𝐺𝑛)) = (2nd ‘(⟨(1st ‘(𝐺‘(𝑛 − 1))), (2nd ‘(𝐺‘(𝑛 − 1)))⟩𝐷(𝐹𝑛))))
4746breq1d 5075 . . . . . . . . 9 ((𝜑𝑛 ∈ ℕ) → ((2nd ‘(𝐺𝑛)) < (𝐹𝑛) ↔ (2nd ‘(⟨(1st ‘(𝐺‘(𝑛 − 1))), (2nd ‘(𝐺‘(𝑛 − 1)))⟩𝐷(𝐹𝑛))) < (𝐹𝑛)))
4845, 47orbi12d 915 . . . . . . . 8 ((𝜑𝑛 ∈ ℕ) → (((𝐹𝑛) < (1st ‘(𝐺𝑛)) ∨ (2nd ‘(𝐺𝑛)) < (𝐹𝑛)) ↔ ((𝐹𝑛) < (1st ‘(⟨(1st ‘(𝐺‘(𝑛 − 1))), (2nd ‘(𝐺‘(𝑛 − 1)))⟩𝐷(𝐹𝑛))) ∨ (2nd ‘(⟨(1st ‘(𝐺‘(𝑛 − 1))), (2nd ‘(𝐺‘(𝑛 − 1)))⟩𝐷(𝐹𝑛))) < (𝐹𝑛))))
4930, 48mpbird 259 . . . . . . 7 ((𝜑𝑛 ∈ ℕ) → ((𝐹𝑛) < (1st ‘(𝐺𝑛)) ∨ (2nd ‘(𝐺𝑛)) < (𝐹𝑛)))
507adantr 483 . . . . . . . . . . 11 ((𝜑𝑛 ∈ ℕ) → ran (1st𝐺) ⊆ ℝ)
518adantr 483 . . . . . . . . . . 11 ((𝜑𝑛 ∈ ℕ) → ran (1st𝐺) ≠ ∅)
5212adantr 483 . . . . . . . . . . 11 ((𝜑𝑛 ∈ ℕ) → ∃𝑛 ∈ ℝ ∀𝑧 ∈ ran (1st𝐺)𝑧𝑛)
53 nnnn0 11903 . . . . . . . . . . . . 13 (𝑛 ∈ ℕ → 𝑛 ∈ ℕ0)
54 fvco3 6759 . . . . . . . . . . . . 13 ((𝐺:ℕ0⟶(ℝ × ℝ) ∧ 𝑛 ∈ ℕ0) → ((1st𝐺)‘𝑛) = (1st ‘(𝐺𝑛)))
5517, 53, 54syl2an 597 . . . . . . . . . . . 12 ((𝜑𝑛 ∈ ℕ) → ((1st𝐺)‘𝑛) = (1st ‘(𝐺𝑛)))
5617adantr 483 . . . . . . . . . . . . . 14 ((𝜑𝑛 ∈ ℕ) → 𝐺:ℕ0⟶(ℝ × ℝ))
57 1stcof 7718 . . . . . . . . . . . . . 14 (𝐺:ℕ0⟶(ℝ × ℝ) → (1st𝐺):ℕ0⟶ℝ)
58 ffn 6513 . . . . . . . . . . . . . 14 ((1st𝐺):ℕ0⟶ℝ → (1st𝐺) Fn ℕ0)
5956, 57, 583syl 18 . . . . . . . . . . . . 13 ((𝜑𝑛 ∈ ℕ) → (1st𝐺) Fn ℕ0)
6053adantl 484 . . . . . . . . . . . . 13 ((𝜑𝑛 ∈ ℕ) → 𝑛 ∈ ℕ0)
61 fnfvelrn 6847 . . . . . . . . . . . . 13 (((1st𝐺) Fn ℕ0𝑛 ∈ ℕ0) → ((1st𝐺)‘𝑛) ∈ ran (1st𝐺))
6259, 60, 61syl2anc 586 . . . . . . . . . . . 12 ((𝜑𝑛 ∈ ℕ) → ((1st𝐺)‘𝑛) ∈ ran (1st𝐺))
6355, 62eqeltrrd 2914 . . . . . . . . . . 11 ((𝜑𝑛 ∈ ℕ) → (1st ‘(𝐺𝑛)) ∈ ran (1st𝐺))
6450, 51, 52, 63suprubd 11602 . . . . . . . . . 10 ((𝜑𝑛 ∈ ℕ) → (1st ‘(𝐺𝑛)) ≤ sup(ran (1st𝐺), ℝ, < ))
6564, 1breqtrrdi 5107 . . . . . . . . 9 ((𝜑𝑛 ∈ ℕ) → (1st ‘(𝐺𝑛)) ≤ 𝑆)
66 ffvelrn 6848 . . . . . . . . . . . 12 ((𝐺:ℕ0⟶(ℝ × ℝ) ∧ 𝑛 ∈ ℕ0) → (𝐺𝑛) ∈ (ℝ × ℝ))
6717, 53, 66syl2an 597 . . . . . . . . . . 11 ((𝜑𝑛 ∈ ℕ) → (𝐺𝑛) ∈ (ℝ × ℝ))
68 xp1st 7720 . . . . . . . . . . 11 ((𝐺𝑛) ∈ (ℝ × ℝ) → (1st ‘(𝐺𝑛)) ∈ ℝ)
6967, 68syl 17 . . . . . . . . . 10 ((𝜑𝑛 ∈ ℕ) → (1st ‘(𝐺𝑛)) ∈ ℝ)
7014adantr 483 . . . . . . . . . 10 ((𝜑𝑛 ∈ ℕ) → 𝑆 ∈ ℝ)
71 ltletr 10731 . . . . . . . . . 10 (((𝐹𝑛) ∈ ℝ ∧ (1st ‘(𝐺𝑛)) ∈ ℝ ∧ 𝑆 ∈ ℝ) → (((𝐹𝑛) < (1st ‘(𝐺𝑛)) ∧ (1st ‘(𝐺𝑛)) ≤ 𝑆) → (𝐹𝑛) < 𝑆))
7225, 69, 70, 71syl3anc 1367 . . . . . . . . 9 ((𝜑𝑛 ∈ ℕ) → (((𝐹𝑛) < (1st ‘(𝐺𝑛)) ∧ (1st ‘(𝐺𝑛)) ≤ 𝑆) → (𝐹𝑛) < 𝑆))
7365, 72mpan2d 692 . . . . . . . 8 ((𝜑𝑛 ∈ ℕ) → ((𝐹𝑛) < (1st ‘(𝐺𝑛)) → (𝐹𝑛) < 𝑆))
74 fvco3 6759 . . . . . . . . . . . . . . 15 ((𝐺:ℕ0⟶(ℝ × ℝ) ∧ 𝑘 ∈ ℕ0) → ((1st𝐺)‘𝑘) = (1st ‘(𝐺𝑘)))
7556, 74sylan 582 . . . . . . . . . . . . . 14 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ ℕ0) → ((1st𝐺)‘𝑘) = (1st ‘(𝐺𝑘)))
7656ffvelrnda 6850 . . . . . . . . . . . . . . . 16 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ ℕ0) → (𝐺𝑘) ∈ (ℝ × ℝ))
77 xp1st 7720 . . . . . . . . . . . . . . . 16 ((𝐺𝑘) ∈ (ℝ × ℝ) → (1st ‘(𝐺𝑘)) ∈ ℝ)
7876, 77syl 17 . . . . . . . . . . . . . . 15 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ ℕ0) → (1st ‘(𝐺𝑘)) ∈ ℝ)
79 xp2nd 7721 . . . . . . . . . . . . . . . . 17 ((𝐺𝑛) ∈ (ℝ × ℝ) → (2nd ‘(𝐺𝑛)) ∈ ℝ)
8067, 79syl 17 . . . . . . . . . . . . . . . 16 ((𝜑𝑛 ∈ ℕ) → (2nd ‘(𝐺𝑛)) ∈ ℝ)
8180adantr 483 . . . . . . . . . . . . . . 15 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ ℕ0) → (2nd ‘(𝐺𝑛)) ∈ ℝ)
8215adantr 483 . . . . . . . . . . . . . . . 16 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ ℕ0) → 𝐹:ℕ⟶ℝ)
8316adantr 483 . . . . . . . . . . . . . . . 16 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ ℕ0) → 𝐷 = (𝑥 ∈ (ℝ × ℝ), 𝑦 ∈ ℝ ↦ (((1st𝑥) + (2nd𝑥)) / 2) / 𝑚if(𝑚 < 𝑦, ⟨(1st𝑥), 𝑚⟩, ⟨((𝑚 + (2nd𝑥)) / 2), (2nd𝑥)⟩)))
84 simpr 487 . . . . . . . . . . . . . . . 16 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ ℕ0) → 𝑘 ∈ ℕ0)
8560adantr 483 . . . . . . . . . . . . . . . 16 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ ℕ0) → 𝑛 ∈ ℕ0)
8682, 83, 4, 5, 84, 85ruclem10 15591 . . . . . . . . . . . . . . 15 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ ℕ0) → (1st ‘(𝐺𝑘)) < (2nd ‘(𝐺𝑛)))
8778, 81, 86ltled 10787 . . . . . . . . . . . . . 14 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ ℕ0) → (1st ‘(𝐺𝑘)) ≤ (2nd ‘(𝐺𝑛)))
8875, 87eqbrtrd 5087 . . . . . . . . . . . . 13 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ ℕ0) → ((1st𝐺)‘𝑘) ≤ (2nd ‘(𝐺𝑛)))
8988ralrimiva 3182 . . . . . . . . . . . 12 ((𝜑𝑛 ∈ ℕ) → ∀𝑘 ∈ ℕ0 ((1st𝐺)‘𝑘) ≤ (2nd ‘(𝐺𝑛)))
90 breq1 5068 . . . . . . . . . . . . . 14 (𝑧 = ((1st𝐺)‘𝑘) → (𝑧 ≤ (2nd ‘(𝐺𝑛)) ↔ ((1st𝐺)‘𝑘) ≤ (2nd ‘(𝐺𝑛))))
9190ralrn 6853 . . . . . . . . . . . . 13 ((1st𝐺) Fn ℕ0 → (∀𝑧 ∈ ran (1st𝐺)𝑧 ≤ (2nd ‘(𝐺𝑛)) ↔ ∀𝑘 ∈ ℕ0 ((1st𝐺)‘𝑘) ≤ (2nd ‘(𝐺𝑛))))
9259, 91syl 17 . . . . . . . . . . . 12 ((𝜑𝑛 ∈ ℕ) → (∀𝑧 ∈ ran (1st𝐺)𝑧 ≤ (2nd ‘(𝐺𝑛)) ↔ ∀𝑘 ∈ ℕ0 ((1st𝐺)‘𝑘) ≤ (2nd ‘(𝐺𝑛))))
9389, 92mpbird 259 . . . . . . . . . . 11 ((𝜑𝑛 ∈ ℕ) → ∀𝑧 ∈ ran (1st𝐺)𝑧 ≤ (2nd ‘(𝐺𝑛)))
94 suprleub 11606 . . . . . . . . . . . 12 (((ran (1st𝐺) ⊆ ℝ ∧ ran (1st𝐺) ≠ ∅ ∧ ∃𝑛 ∈ ℝ ∀𝑧 ∈ ran (1st𝐺)𝑧𝑛) ∧ (2nd ‘(𝐺𝑛)) ∈ ℝ) → (sup(ran (1st𝐺), ℝ, < ) ≤ (2nd ‘(𝐺𝑛)) ↔ ∀𝑧 ∈ ran (1st𝐺)𝑧 ≤ (2nd ‘(𝐺𝑛))))
9550, 51, 52, 80, 94syl31anc 1369 . . . . . . . . . . 11 ((𝜑𝑛 ∈ ℕ) → (sup(ran (1st𝐺), ℝ, < ) ≤ (2nd ‘(𝐺𝑛)) ↔ ∀𝑧 ∈ ran (1st𝐺)𝑧 ≤ (2nd ‘(𝐺𝑛))))
9693, 95mpbird 259 . . . . . . . . . 10 ((𝜑𝑛 ∈ ℕ) → sup(ran (1st𝐺), ℝ, < ) ≤ (2nd ‘(𝐺𝑛)))
971, 96eqbrtrid 5100 . . . . . . . . 9 ((𝜑𝑛 ∈ ℕ) → 𝑆 ≤ (2nd ‘(𝐺𝑛)))
98 lelttr 10730 . . . . . . . . . 10 ((𝑆 ∈ ℝ ∧ (2nd ‘(𝐺𝑛)) ∈ ℝ ∧ (𝐹𝑛) ∈ ℝ) → ((𝑆 ≤ (2nd ‘(𝐺𝑛)) ∧ (2nd ‘(𝐺𝑛)) < (𝐹𝑛)) → 𝑆 < (𝐹𝑛)))
9970, 80, 25, 98syl3anc 1367 . . . . . . . . 9 ((𝜑𝑛 ∈ ℕ) → ((𝑆 ≤ (2nd ‘(𝐺𝑛)) ∧ (2nd ‘(𝐺𝑛)) < (𝐹𝑛)) → 𝑆 < (𝐹𝑛)))
10097, 99mpand 693 . . . . . . . 8 ((𝜑𝑛 ∈ ℕ) → ((2nd ‘(𝐺𝑛)) < (𝐹𝑛) → 𝑆 < (𝐹𝑛)))
10173, 100orim12d 961 . . . . . . 7 ((𝜑𝑛 ∈ ℕ) → (((𝐹𝑛) < (1st ‘(𝐺𝑛)) ∨ (2nd ‘(𝐺𝑛)) < (𝐹𝑛)) → ((𝐹𝑛) < 𝑆𝑆 < (𝐹𝑛))))
10249, 101mpd 15 . . . . . 6 ((𝜑𝑛 ∈ ℕ) → ((𝐹𝑛) < 𝑆𝑆 < (𝐹𝑛)))
10325, 70lttri2d 10778 . . . . . 6 ((𝜑𝑛 ∈ ℕ) → ((𝐹𝑛) ≠ 𝑆 ↔ ((𝐹𝑛) < 𝑆𝑆 < (𝐹𝑛))))
104102, 103mpbird 259 . . . . 5 ((𝜑𝑛 ∈ ℕ) → (𝐹𝑛) ≠ 𝑆)
105104neneqd 3021 . . . 4 ((𝜑𝑛 ∈ ℕ) → ¬ (𝐹𝑛) = 𝑆)
106105nrexdv 3270 . . 3 (𝜑 → ¬ ∃𝑛 ∈ ℕ (𝐹𝑛) = 𝑆)
107 risset 3267 . . . 4 (𝑆 ∈ ran 𝐹 ↔ ∃𝑧 ∈ ran 𝐹 𝑧 = 𝑆)
108 ffn 6513 . . . . 5 (𝐹:ℕ⟶ℝ → 𝐹 Fn ℕ)
109 eqeq1 2825 . . . . . 6 (𝑧 = (𝐹𝑛) → (𝑧 = 𝑆 ↔ (𝐹𝑛) = 𝑆))
110109rexrn 6852 . . . . 5 (𝐹 Fn ℕ → (∃𝑧 ∈ ran 𝐹 𝑧 = 𝑆 ↔ ∃𝑛 ∈ ℕ (𝐹𝑛) = 𝑆))
1112, 108, 1103syl 18 . . . 4 (𝜑 → (∃𝑧 ∈ ran 𝐹 𝑧 = 𝑆 ↔ ∃𝑛 ∈ ℕ (𝐹𝑛) = 𝑆))
112107, 111syl5bb 285 . . 3 (𝜑 → (𝑆 ∈ ran 𝐹 ↔ ∃𝑛 ∈ ℕ (𝐹𝑛) = 𝑆))
113106, 112mtbird 327 . 2 (𝜑 → ¬ 𝑆 ∈ ran 𝐹)
11414, 113eldifd 3946 1 (𝜑𝑆 ∈ (ℝ ∖ ran 𝐹))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  wo 843   = wceq 1533  wcel 2110  wne 3016  wral 3138  wrex 3139  csb 3882  cdif 3932  cun 3933  wss 3935  c0 4290  ifcif 4466  {csn 4566  cop 4572   class class class wbr 5065   × cxp 5552  ran crn 5555  ccom 5558   Fn wfn 6349  wf 6350  cfv 6354  (class class class)co 7155  cmpo 7157  1st c1st 7686  2nd c2nd 7687  supcsup 8903  cc 10534  cr 10535  0cc0 10536  1c1 10537   + caddc 10539   < clt 10674  cle 10675  cmin 10869   / cdiv 11296  cn 11637  2c2 11691  0cn0 11896  seqcseq 13368
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-sep 5202  ax-nul 5209  ax-pow 5265  ax-pr 5329  ax-un 7460  ax-cnex 10592  ax-resscn 10593  ax-1cn 10594  ax-icn 10595  ax-addcl 10596  ax-addrcl 10597  ax-mulcl 10598  ax-mulrcl 10599  ax-mulcom 10600  ax-addass 10601  ax-mulass 10602  ax-distr 10603  ax-i2m1 10604  ax-1ne0 10605  ax-1rid 10606  ax-rnegex 10607  ax-rrecex 10608  ax-cnre 10609  ax-pre-lttri 10610  ax-pre-lttrn 10611  ax-pre-ltadd 10612  ax-pre-mulgt0 10613  ax-pre-sup 10614
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-fal 1546  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-pss 3953  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4567  df-pr 4569  df-tp 4571  df-op 4573  df-uni 4838  df-iun 4920  df-br 5066  df-opab 5128  df-mpt 5146  df-tr 5172  df-id 5459  df-eprel 5464  df-po 5473  df-so 5474  df-fr 5513  df-we 5515  df-xp 5560  df-rel 5561  df-cnv 5562  df-co 5563  df-dm 5564  df-rn 5565  df-res 5566  df-ima 5567  df-pred 6147  df-ord 6193  df-on 6194  df-lim 6195  df-suc 6196  df-iota 6313  df-fun 6356  df-fn 6357  df-f 6358  df-f1 6359  df-fo 6360  df-f1o 6361  df-fv 6362  df-riota 7113  df-ov 7158  df-oprab 7159  df-mpo 7160  df-om 7580  df-1st 7688  df-2nd 7689  df-wrecs 7946  df-recs 8007  df-rdg 8045  df-er 8288  df-en 8509  df-dom 8510  df-sdom 8511  df-sup 8905  df-pnf 10676  df-mnf 10677  df-xr 10678  df-ltxr 10679  df-le 10680  df-sub 10871  df-neg 10872  df-div 11297  df-nn 11638  df-2 11699  df-n0 11897  df-z 11981  df-uz 12243  df-fz 12892  df-seq 13369
This theorem is referenced by:  ruclem13  15594
  Copyright terms: Public domain W3C validator