![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ruclem4 | Structured version Visualization version GIF version |
Description: Lemma for ruc 15171. Initial value of the interval sequence. (Contributed by Mario Carneiro, 28-May-2014.) |
Ref | Expression |
---|---|
ruc.1 | ⊢ (𝜑 → 𝐹:ℕ⟶ℝ) |
ruc.2 | ⊢ (𝜑 → 𝐷 = (𝑥 ∈ (ℝ × ℝ), 𝑦 ∈ ℝ ↦ ⦋(((1st ‘𝑥) + (2nd ‘𝑥)) / 2) / 𝑚⦌if(𝑚 < 𝑦, 〈(1st ‘𝑥), 𝑚〉, 〈((𝑚 + (2nd ‘𝑥)) / 2), (2nd ‘𝑥)〉))) |
ruc.4 | ⊢ 𝐶 = ({〈0, 〈0, 1〉〉} ∪ 𝐹) |
ruc.5 | ⊢ 𝐺 = seq0(𝐷, 𝐶) |
Ref | Expression |
---|---|
ruclem4 | ⊢ (𝜑 → (𝐺‘0) = 〈0, 1〉) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ruc.5 | . . 3 ⊢ 𝐺 = seq0(𝐷, 𝐶) | |
2 | 1 | fveq1i 6353 | . 2 ⊢ (𝐺‘0) = (seq0(𝐷, 𝐶)‘0) |
3 | 0z 11580 | . . 3 ⊢ 0 ∈ ℤ | |
4 | ruc.4 | . . . . . 6 ⊢ 𝐶 = ({〈0, 〈0, 1〉〉} ∪ 𝐹) | |
5 | dfn2 11497 | . . . . . . . . 9 ⊢ ℕ = (ℕ0 ∖ {0}) | |
6 | 5 | reseq2i 5548 | . . . . . . . 8 ⊢ (𝐹 ↾ ℕ) = (𝐹 ↾ (ℕ0 ∖ {0})) |
7 | ruc.1 | . . . . . . . . 9 ⊢ (𝜑 → 𝐹:ℕ⟶ℝ) | |
8 | ffn 6206 | . . . . . . . . 9 ⊢ (𝐹:ℕ⟶ℝ → 𝐹 Fn ℕ) | |
9 | fnresdm 6161 | . . . . . . . . 9 ⊢ (𝐹 Fn ℕ → (𝐹 ↾ ℕ) = 𝐹) | |
10 | 7, 8, 9 | 3syl 18 | . . . . . . . 8 ⊢ (𝜑 → (𝐹 ↾ ℕ) = 𝐹) |
11 | 6, 10 | syl5reqr 2809 | . . . . . . 7 ⊢ (𝜑 → 𝐹 = (𝐹 ↾ (ℕ0 ∖ {0}))) |
12 | 11 | uneq2d 3910 | . . . . . 6 ⊢ (𝜑 → ({〈0, 〈0, 1〉〉} ∪ 𝐹) = ({〈0, 〈0, 1〉〉} ∪ (𝐹 ↾ (ℕ0 ∖ {0})))) |
13 | 4, 12 | syl5eq 2806 | . . . . 5 ⊢ (𝜑 → 𝐶 = ({〈0, 〈0, 1〉〉} ∪ (𝐹 ↾ (ℕ0 ∖ {0})))) |
14 | 13 | fveq1d 6354 | . . . 4 ⊢ (𝜑 → (𝐶‘0) = (({〈0, 〈0, 1〉〉} ∪ (𝐹 ↾ (ℕ0 ∖ {0})))‘0)) |
15 | c0ex 10226 | . . . . 5 ⊢ 0 ∈ V | |
16 | opex 5081 | . . . . 5 ⊢ 〈0, 1〉 ∈ V | |
17 | eqid 2760 | . . . . 5 ⊢ ({〈0, 〈0, 1〉〉} ∪ (𝐹 ↾ (ℕ0 ∖ {0}))) = ({〈0, 〈0, 1〉〉} ∪ (𝐹 ↾ (ℕ0 ∖ {0}))) | |
18 | 15, 16, 17 | fvsnun1 6612 | . . . 4 ⊢ (({〈0, 〈0, 1〉〉} ∪ (𝐹 ↾ (ℕ0 ∖ {0})))‘0) = 〈0, 1〉 |
19 | 14, 18 | syl6eq 2810 | . . 3 ⊢ (𝜑 → (𝐶‘0) = 〈0, 1〉) |
20 | 3, 19 | seq1i 13009 | . 2 ⊢ (𝜑 → (seq0(𝐷, 𝐶)‘0) = 〈0, 1〉) |
21 | 2, 20 | syl5eq 2806 | 1 ⊢ (𝜑 → (𝐺‘0) = 〈0, 1〉) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1632 ⦋csb 3674 ∖ cdif 3712 ∪ cun 3713 ifcif 4230 {csn 4321 〈cop 4327 class class class wbr 4804 × cxp 5264 ↾ cres 5268 Fn wfn 6044 ⟶wf 6045 ‘cfv 6049 (class class class)co 6813 ↦ cmpt2 6815 1st c1st 7331 2nd c2nd 7332 ℝcr 10127 0cc0 10128 1c1 10129 + caddc 10131 < clt 10266 / cdiv 10876 ℕcn 11212 2c2 11262 ℕ0cn0 11484 seqcseq 12995 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1988 ax-6 2054 ax-7 2090 ax-8 2141 ax-9 2148 ax-10 2168 ax-11 2183 ax-12 2196 ax-13 2391 ax-ext 2740 ax-sep 4933 ax-nul 4941 ax-pow 4992 ax-pr 5055 ax-un 7114 ax-cnex 10184 ax-resscn 10185 ax-1cn 10186 ax-icn 10187 ax-addcl 10188 ax-addrcl 10189 ax-mulcl 10190 ax-mulrcl 10191 ax-mulcom 10192 ax-addass 10193 ax-mulass 10194 ax-distr 10195 ax-i2m1 10196 ax-1ne0 10197 ax-1rid 10198 ax-rnegex 10199 ax-rrecex 10200 ax-cnre 10201 ax-pre-lttri 10202 ax-pre-lttrn 10203 ax-pre-ltadd 10204 ax-pre-mulgt0 10205 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1073 df-3an 1074 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2047 df-eu 2611 df-mo 2612 df-clab 2747 df-cleq 2753 df-clel 2756 df-nfc 2891 df-ne 2933 df-nel 3036 df-ral 3055 df-rex 3056 df-reu 3057 df-rab 3059 df-v 3342 df-sbc 3577 df-csb 3675 df-dif 3718 df-un 3720 df-in 3722 df-ss 3729 df-pss 3731 df-nul 4059 df-if 4231 df-pw 4304 df-sn 4322 df-pr 4324 df-tp 4326 df-op 4328 df-uni 4589 df-iun 4674 df-br 4805 df-opab 4865 df-mpt 4882 df-tr 4905 df-id 5174 df-eprel 5179 df-po 5187 df-so 5188 df-fr 5225 df-we 5227 df-xp 5272 df-rel 5273 df-cnv 5274 df-co 5275 df-dm 5276 df-rn 5277 df-res 5278 df-ima 5279 df-pred 5841 df-ord 5887 df-on 5888 df-lim 5889 df-suc 5890 df-iota 6012 df-fun 6051 df-fn 6052 df-f 6053 df-f1 6054 df-fo 6055 df-f1o 6056 df-fv 6057 df-riota 6774 df-ov 6816 df-oprab 6817 df-mpt2 6818 df-om 7231 df-2nd 7334 df-wrecs 7576 df-recs 7637 df-rdg 7675 df-er 7911 df-en 8122 df-dom 8123 df-sdom 8124 df-pnf 10268 df-mnf 10269 df-xr 10270 df-ltxr 10271 df-le 10272 df-sub 10460 df-neg 10461 df-nn 11213 df-n0 11485 df-z 11570 df-uz 11880 df-seq 12996 |
This theorem is referenced by: ruclem6 15163 ruclem8 15165 ruclem11 15168 |
Copyright terms: Public domain | W3C validator |