MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ruclem7 Structured version   Visualization version   GIF version

Theorem ruclem7 15577
Description: Lemma for ruc 15584. Successor value for the interval sequence. (Contributed by Mario Carneiro, 28-May-2014.)
Hypotheses
Ref Expression
ruc.1 (𝜑𝐹:ℕ⟶ℝ)
ruc.2 (𝜑𝐷 = (𝑥 ∈ (ℝ × ℝ), 𝑦 ∈ ℝ ↦ (((1st𝑥) + (2nd𝑥)) / 2) / 𝑚if(𝑚 < 𝑦, ⟨(1st𝑥), 𝑚⟩, ⟨((𝑚 + (2nd𝑥)) / 2), (2nd𝑥)⟩)))
ruc.4 𝐶 = ({⟨0, ⟨0, 1⟩⟩} ∪ 𝐹)
ruc.5 𝐺 = seq0(𝐷, 𝐶)
Assertion
Ref Expression
ruclem7 ((𝜑𝑁 ∈ ℕ0) → (𝐺‘(𝑁 + 1)) = ((𝐺𝑁)𝐷(𝐹‘(𝑁 + 1))))
Distinct variable groups:   𝑥,𝑚,𝑦,𝐹   𝑚,𝐺,𝑥,𝑦   𝑚,𝑁,𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑚)   𝐶(𝑥,𝑦,𝑚)   𝐷(𝑥,𝑦,𝑚)

Proof of Theorem ruclem7
StepHypRef Expression
1 simpr 485 . . . . 5 ((𝜑𝑁 ∈ ℕ0) → 𝑁 ∈ ℕ0)
2 nn0uz 12268 . . . . 5 0 = (ℤ‘0)
31, 2eleqtrdi 2920 . . . 4 ((𝜑𝑁 ∈ ℕ0) → 𝑁 ∈ (ℤ‘0))
4 seqp1 13372 . . . 4 (𝑁 ∈ (ℤ‘0) → (seq0(𝐷, 𝐶)‘(𝑁 + 1)) = ((seq0(𝐷, 𝐶)‘𝑁)𝐷(𝐶‘(𝑁 + 1))))
53, 4syl 17 . . 3 ((𝜑𝑁 ∈ ℕ0) → (seq0(𝐷, 𝐶)‘(𝑁 + 1)) = ((seq0(𝐷, 𝐶)‘𝑁)𝐷(𝐶‘(𝑁 + 1))))
6 ruc.5 . . . 4 𝐺 = seq0(𝐷, 𝐶)
76fveq1i 6664 . . 3 (𝐺‘(𝑁 + 1)) = (seq0(𝐷, 𝐶)‘(𝑁 + 1))
86fveq1i 6664 . . . 4 (𝐺𝑁) = (seq0(𝐷, 𝐶)‘𝑁)
98oveq1i 7155 . . 3 ((𝐺𝑁)𝐷(𝐶‘(𝑁 + 1))) = ((seq0(𝐷, 𝐶)‘𝑁)𝐷(𝐶‘(𝑁 + 1)))
105, 7, 93eqtr4g 2878 . 2 ((𝜑𝑁 ∈ ℕ0) → (𝐺‘(𝑁 + 1)) = ((𝐺𝑁)𝐷(𝐶‘(𝑁 + 1))))
11 nn0p1nn 11924 . . . . . . 7 (𝑁 ∈ ℕ0 → (𝑁 + 1) ∈ ℕ)
1211adantl 482 . . . . . 6 ((𝜑𝑁 ∈ ℕ0) → (𝑁 + 1) ∈ ℕ)
1312nnne0d 11675 . . . . 5 ((𝜑𝑁 ∈ ℕ0) → (𝑁 + 1) ≠ 0)
1413necomd 3068 . . . 4 ((𝜑𝑁 ∈ ℕ0) → 0 ≠ (𝑁 + 1))
15 ruc.4 . . . . . . 7 𝐶 = ({⟨0, ⟨0, 1⟩⟩} ∪ 𝐹)
1615equncomi 4128 . . . . . 6 𝐶 = (𝐹 ∪ {⟨0, ⟨0, 1⟩⟩})
1716fveq1i 6664 . . . . 5 (𝐶‘(𝑁 + 1)) = ((𝐹 ∪ {⟨0, ⟨0, 1⟩⟩})‘(𝑁 + 1))
18 fvunsn 6933 . . . . 5 (0 ≠ (𝑁 + 1) → ((𝐹 ∪ {⟨0, ⟨0, 1⟩⟩})‘(𝑁 + 1)) = (𝐹‘(𝑁 + 1)))
1917, 18syl5eq 2865 . . . 4 (0 ≠ (𝑁 + 1) → (𝐶‘(𝑁 + 1)) = (𝐹‘(𝑁 + 1)))
2014, 19syl 17 . . 3 ((𝜑𝑁 ∈ ℕ0) → (𝐶‘(𝑁 + 1)) = (𝐹‘(𝑁 + 1)))
2120oveq2d 7161 . 2 ((𝜑𝑁 ∈ ℕ0) → ((𝐺𝑁)𝐷(𝐶‘(𝑁 + 1))) = ((𝐺𝑁)𝐷(𝐹‘(𝑁 + 1))))
2210, 21eqtrd 2853 1 ((𝜑𝑁 ∈ ℕ0) → (𝐺‘(𝑁 + 1)) = ((𝐺𝑁)𝐷(𝐹‘(𝑁 + 1))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1528  wcel 2105  wne 3013  csb 3880  cun 3931  ifcif 4463  {csn 4557  cop 4563   class class class wbr 5057   × cxp 5546  wf 6344  cfv 6348  (class class class)co 7145  cmpo 7147  1st c1st 7676  2nd c2nd 7677  cr 10524  0cc0 10525  1c1 10526   + caddc 10528   < clt 10663   / cdiv 11285  cn 11626  2c2 11680  0cn0 11885  cuz 12231  seqcseq 13357
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1787  ax-4 1801  ax-5 1902  ax-6 1961  ax-7 2006  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2151  ax-12 2167  ax-ext 2790  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7450  ax-cnex 10581  ax-resscn 10582  ax-1cn 10583  ax-icn 10584  ax-addcl 10585  ax-addrcl 10586  ax-mulcl 10587  ax-mulrcl 10588  ax-mulcom 10589  ax-addass 10590  ax-mulass 10591  ax-distr 10592  ax-i2m1 10593  ax-1ne0 10594  ax-1rid 10595  ax-rnegex 10596  ax-rrecex 10597  ax-cnre 10598  ax-pre-lttri 10599  ax-pre-lttrn 10600  ax-pre-ltadd 10601  ax-pre-mulgt0 10602
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 842  df-3or 1080  df-3an 1081  df-tru 1531  df-ex 1772  df-nf 1776  df-sb 2061  df-mo 2615  df-eu 2647  df-clab 2797  df-cleq 2811  df-clel 2890  df-nfc 2960  df-ne 3014  df-nel 3121  df-ral 3140  df-rex 3141  df-reu 3142  df-rab 3144  df-v 3494  df-sbc 3770  df-csb 3881  df-dif 3936  df-un 3938  df-in 3940  df-ss 3949  df-pss 3951  df-nul 4289  df-if 4464  df-pw 4537  df-sn 4558  df-pr 4560  df-tp 4562  df-op 4564  df-uni 4831  df-iun 4912  df-br 5058  df-opab 5120  df-mpt 5138  df-tr 5164  df-id 5453  df-eprel 5458  df-po 5467  df-so 5468  df-fr 5507  df-we 5509  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-pred 6141  df-ord 6187  df-on 6188  df-lim 6189  df-suc 6190  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-riota 7103  df-ov 7148  df-oprab 7149  df-mpo 7150  df-om 7570  df-2nd 7679  df-wrecs 7936  df-recs 7997  df-rdg 8035  df-er 8278  df-en 8498  df-dom 8499  df-sdom 8500  df-pnf 10665  df-mnf 10666  df-xr 10667  df-ltxr 10668  df-le 10669  df-sub 10860  df-neg 10861  df-nn 11627  df-n0 11886  df-z 11970  df-uz 12232  df-seq 13358
This theorem is referenced by:  ruclem8  15578  ruclem9  15579  ruclem12  15582
  Copyright terms: Public domain W3C validator