MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rusgrnumwwlkl1 Structured version   Visualization version   GIF version

Theorem rusgrnumwwlkl1 27749
Description: In a k-regular graph, there are k walks (as word) of length 1 starting at each vertex. (Contributed by Alexander van der Vekens, 28-Jul-2018.) (Revised by AV, 7-May-2021.)
Hypothesis
Ref Expression
rusgrnumwwlkl1.v 𝑉 = (Vtx‘𝐺)
Assertion
Ref Expression
rusgrnumwwlkl1 ((𝐺 RegUSGraph 𝐾𝑃𝑉) → (♯‘{𝑤 ∈ (1 WWalksN 𝐺) ∣ (𝑤‘0) = 𝑃}) = 𝐾)
Distinct variable groups:   𝑤,𝐺   𝑤,𝐾   𝑤,𝑃   𝑤,𝑉

Proof of Theorem rusgrnumwwlkl1
Dummy variable 𝑖 is distinct from all other variables.
StepHypRef Expression
1 1nn0 11916 . . . . . . . . 9 1 ∈ ℕ0
2 iswwlksn 27618 . . . . . . . . 9 (1 ∈ ℕ0 → (𝑤 ∈ (1 WWalksN 𝐺) ↔ (𝑤 ∈ (WWalks‘𝐺) ∧ (♯‘𝑤) = (1 + 1))))
31, 2ax-mp 5 . . . . . . . 8 (𝑤 ∈ (1 WWalksN 𝐺) ↔ (𝑤 ∈ (WWalks‘𝐺) ∧ (♯‘𝑤) = (1 + 1)))
4 rusgrnumwwlkl1.v . . . . . . . . . 10 𝑉 = (Vtx‘𝐺)
5 eqid 2823 . . . . . . . . . 10 (Edg‘𝐺) = (Edg‘𝐺)
64, 5iswwlks 27616 . . . . . . . . 9 (𝑤 ∈ (WWalks‘𝐺) ↔ (𝑤 ≠ ∅ ∧ 𝑤 ∈ Word 𝑉 ∧ ∀𝑖 ∈ (0..^((♯‘𝑤) − 1)){(𝑤𝑖), (𝑤‘(𝑖 + 1))} ∈ (Edg‘𝐺)))
76anbi1i 625 . . . . . . . 8 ((𝑤 ∈ (WWalks‘𝐺) ∧ (♯‘𝑤) = (1 + 1)) ↔ ((𝑤 ≠ ∅ ∧ 𝑤 ∈ Word 𝑉 ∧ ∀𝑖 ∈ (0..^((♯‘𝑤) − 1)){(𝑤𝑖), (𝑤‘(𝑖 + 1))} ∈ (Edg‘𝐺)) ∧ (♯‘𝑤) = (1 + 1)))
83, 7bitri 277 . . . . . . 7 (𝑤 ∈ (1 WWalksN 𝐺) ↔ ((𝑤 ≠ ∅ ∧ 𝑤 ∈ Word 𝑉 ∧ ∀𝑖 ∈ (0..^((♯‘𝑤) − 1)){(𝑤𝑖), (𝑤‘(𝑖 + 1))} ∈ (Edg‘𝐺)) ∧ (♯‘𝑤) = (1 + 1)))
98a1i 11 . . . . . 6 ((𝐺 RegUSGraph 𝐾𝑃𝑉) → (𝑤 ∈ (1 WWalksN 𝐺) ↔ ((𝑤 ≠ ∅ ∧ 𝑤 ∈ Word 𝑉 ∧ ∀𝑖 ∈ (0..^((♯‘𝑤) − 1)){(𝑤𝑖), (𝑤‘(𝑖 + 1))} ∈ (Edg‘𝐺)) ∧ (♯‘𝑤) = (1 + 1))))
109anbi1d 631 . . . . 5 ((𝐺 RegUSGraph 𝐾𝑃𝑉) → ((𝑤 ∈ (1 WWalksN 𝐺) ∧ (𝑤‘0) = 𝑃) ↔ (((𝑤 ≠ ∅ ∧ 𝑤 ∈ Word 𝑉 ∧ ∀𝑖 ∈ (0..^((♯‘𝑤) − 1)){(𝑤𝑖), (𝑤‘(𝑖 + 1))} ∈ (Edg‘𝐺)) ∧ (♯‘𝑤) = (1 + 1)) ∧ (𝑤‘0) = 𝑃)))
11 1p1e2 11765 . . . . . . . . . . 11 (1 + 1) = 2
1211eqeq2i 2836 . . . . . . . . . 10 ((♯‘𝑤) = (1 + 1) ↔ (♯‘𝑤) = 2)
1312a1i 11 . . . . . . . . 9 ((𝐺 RegUSGraph 𝐾𝑃𝑉) → ((♯‘𝑤) = (1 + 1) ↔ (♯‘𝑤) = 2))
1413anbi2d 630 . . . . . . . 8 ((𝐺 RegUSGraph 𝐾𝑃𝑉) → (((𝑤 ≠ ∅ ∧ 𝑤 ∈ Word 𝑉 ∧ ∀𝑖 ∈ (0..^((♯‘𝑤) − 1)){(𝑤𝑖), (𝑤‘(𝑖 + 1))} ∈ (Edg‘𝐺)) ∧ (♯‘𝑤) = (1 + 1)) ↔ ((𝑤 ≠ ∅ ∧ 𝑤 ∈ Word 𝑉 ∧ ∀𝑖 ∈ (0..^((♯‘𝑤) − 1)){(𝑤𝑖), (𝑤‘(𝑖 + 1))} ∈ (Edg‘𝐺)) ∧ (♯‘𝑤) = 2)))
15 3anass 1091 . . . . . . . . . . . 12 ((𝑤 ≠ ∅ ∧ 𝑤 ∈ Word 𝑉 ∧ ∀𝑖 ∈ (0..^((♯‘𝑤) − 1)){(𝑤𝑖), (𝑤‘(𝑖 + 1))} ∈ (Edg‘𝐺)) ↔ (𝑤 ≠ ∅ ∧ (𝑤 ∈ Word 𝑉 ∧ ∀𝑖 ∈ (0..^((♯‘𝑤) − 1)){(𝑤𝑖), (𝑤‘(𝑖 + 1))} ∈ (Edg‘𝐺))))
1615a1i 11 . . . . . . . . . . 11 (((𝐺 RegUSGraph 𝐾𝑃𝑉) ∧ (♯‘𝑤) = 2) → ((𝑤 ≠ ∅ ∧ 𝑤 ∈ Word 𝑉 ∧ ∀𝑖 ∈ (0..^((♯‘𝑤) − 1)){(𝑤𝑖), (𝑤‘(𝑖 + 1))} ∈ (Edg‘𝐺)) ↔ (𝑤 ≠ ∅ ∧ (𝑤 ∈ Word 𝑉 ∧ ∀𝑖 ∈ (0..^((♯‘𝑤) − 1)){(𝑤𝑖), (𝑤‘(𝑖 + 1))} ∈ (Edg‘𝐺)))))
17 fveq2 6672 . . . . . . . . . . . . . . . 16 (𝑤 = ∅ → (♯‘𝑤) = (♯‘∅))
18 hash0 13731 . . . . . . . . . . . . . . . 16 (♯‘∅) = 0
1917, 18syl6eq 2874 . . . . . . . . . . . . . . 15 (𝑤 = ∅ → (♯‘𝑤) = 0)
20 2ne0 11744 . . . . . . . . . . . . . . . . 17 2 ≠ 0
2120nesymi 3075 . . . . . . . . . . . . . . . 16 ¬ 0 = 2
22 eqeq1 2827 . . . . . . . . . . . . . . . 16 ((♯‘𝑤) = 0 → ((♯‘𝑤) = 2 ↔ 0 = 2))
2321, 22mtbiri 329 . . . . . . . . . . . . . . 15 ((♯‘𝑤) = 0 → ¬ (♯‘𝑤) = 2)
2419, 23syl 17 . . . . . . . . . . . . . 14 (𝑤 = ∅ → ¬ (♯‘𝑤) = 2)
2524necon2ai 3047 . . . . . . . . . . . . 13 ((♯‘𝑤) = 2 → 𝑤 ≠ ∅)
2625adantl 484 . . . . . . . . . . . 12 (((𝐺 RegUSGraph 𝐾𝑃𝑉) ∧ (♯‘𝑤) = 2) → 𝑤 ≠ ∅)
2726biantrurd 535 . . . . . . . . . . 11 (((𝐺 RegUSGraph 𝐾𝑃𝑉) ∧ (♯‘𝑤) = 2) → ((𝑤 ∈ Word 𝑉 ∧ ∀𝑖 ∈ (0..^((♯‘𝑤) − 1)){(𝑤𝑖), (𝑤‘(𝑖 + 1))} ∈ (Edg‘𝐺)) ↔ (𝑤 ≠ ∅ ∧ (𝑤 ∈ Word 𝑉 ∧ ∀𝑖 ∈ (0..^((♯‘𝑤) − 1)){(𝑤𝑖), (𝑤‘(𝑖 + 1))} ∈ (Edg‘𝐺)))))
28 oveq1 7165 . . . . . . . . . . . . . . . . 17 ((♯‘𝑤) = 2 → ((♯‘𝑤) − 1) = (2 − 1))
29 2m1e1 11766 . . . . . . . . . . . . . . . . 17 (2 − 1) = 1
3028, 29syl6eq 2874 . . . . . . . . . . . . . . . 16 ((♯‘𝑤) = 2 → ((♯‘𝑤) − 1) = 1)
3130oveq2d 7174 . . . . . . . . . . . . . . 15 ((♯‘𝑤) = 2 → (0..^((♯‘𝑤) − 1)) = (0..^1))
3231adantl 484 . . . . . . . . . . . . . 14 (((𝐺 RegUSGraph 𝐾𝑃𝑉) ∧ (♯‘𝑤) = 2) → (0..^((♯‘𝑤) − 1)) = (0..^1))
3332raleqdv 3417 . . . . . . . . . . . . 13 (((𝐺 RegUSGraph 𝐾𝑃𝑉) ∧ (♯‘𝑤) = 2) → (∀𝑖 ∈ (0..^((♯‘𝑤) − 1)){(𝑤𝑖), (𝑤‘(𝑖 + 1))} ∈ (Edg‘𝐺) ↔ ∀𝑖 ∈ (0..^1){(𝑤𝑖), (𝑤‘(𝑖 + 1))} ∈ (Edg‘𝐺)))
34 fzo01 13122 . . . . . . . . . . . . . . 15 (0..^1) = {0}
3534raleqi 3415 . . . . . . . . . . . . . 14 (∀𝑖 ∈ (0..^1){(𝑤𝑖), (𝑤‘(𝑖 + 1))} ∈ (Edg‘𝐺) ↔ ∀𝑖 ∈ {0} {(𝑤𝑖), (𝑤‘(𝑖 + 1))} ∈ (Edg‘𝐺))
36 c0ex 10637 . . . . . . . . . . . . . . 15 0 ∈ V
37 fveq2 6672 . . . . . . . . . . . . . . . . 17 (𝑖 = 0 → (𝑤𝑖) = (𝑤‘0))
38 fv0p1e1 11763 . . . . . . . . . . . . . . . . 17 (𝑖 = 0 → (𝑤‘(𝑖 + 1)) = (𝑤‘1))
3937, 38preq12d 4679 . . . . . . . . . . . . . . . 16 (𝑖 = 0 → {(𝑤𝑖), (𝑤‘(𝑖 + 1))} = {(𝑤‘0), (𝑤‘1)})
4039eleq1d 2899 . . . . . . . . . . . . . . 15 (𝑖 = 0 → ({(𝑤𝑖), (𝑤‘(𝑖 + 1))} ∈ (Edg‘𝐺) ↔ {(𝑤‘0), (𝑤‘1)} ∈ (Edg‘𝐺)))
4136, 40ralsn 4621 . . . . . . . . . . . . . 14 (∀𝑖 ∈ {0} {(𝑤𝑖), (𝑤‘(𝑖 + 1))} ∈ (Edg‘𝐺) ↔ {(𝑤‘0), (𝑤‘1)} ∈ (Edg‘𝐺))
4235, 41bitri 277 . . . . . . . . . . . . 13 (∀𝑖 ∈ (0..^1){(𝑤𝑖), (𝑤‘(𝑖 + 1))} ∈ (Edg‘𝐺) ↔ {(𝑤‘0), (𝑤‘1)} ∈ (Edg‘𝐺))
4333, 42syl6bb 289 . . . . . . . . . . . 12 (((𝐺 RegUSGraph 𝐾𝑃𝑉) ∧ (♯‘𝑤) = 2) → (∀𝑖 ∈ (0..^((♯‘𝑤) − 1)){(𝑤𝑖), (𝑤‘(𝑖 + 1))} ∈ (Edg‘𝐺) ↔ {(𝑤‘0), (𝑤‘1)} ∈ (Edg‘𝐺)))
4443anbi2d 630 . . . . . . . . . . 11 (((𝐺 RegUSGraph 𝐾𝑃𝑉) ∧ (♯‘𝑤) = 2) → ((𝑤 ∈ Word 𝑉 ∧ ∀𝑖 ∈ (0..^((♯‘𝑤) − 1)){(𝑤𝑖), (𝑤‘(𝑖 + 1))} ∈ (Edg‘𝐺)) ↔ (𝑤 ∈ Word 𝑉 ∧ {(𝑤‘0), (𝑤‘1)} ∈ (Edg‘𝐺))))
4516, 27, 443bitr2d 309 . . . . . . . . . 10 (((𝐺 RegUSGraph 𝐾𝑃𝑉) ∧ (♯‘𝑤) = 2) → ((𝑤 ≠ ∅ ∧ 𝑤 ∈ Word 𝑉 ∧ ∀𝑖 ∈ (0..^((♯‘𝑤) − 1)){(𝑤𝑖), (𝑤‘(𝑖 + 1))} ∈ (Edg‘𝐺)) ↔ (𝑤 ∈ Word 𝑉 ∧ {(𝑤‘0), (𝑤‘1)} ∈ (Edg‘𝐺))))
4645ex 415 . . . . . . . . 9 ((𝐺 RegUSGraph 𝐾𝑃𝑉) → ((♯‘𝑤) = 2 → ((𝑤 ≠ ∅ ∧ 𝑤 ∈ Word 𝑉 ∧ ∀𝑖 ∈ (0..^((♯‘𝑤) − 1)){(𝑤𝑖), (𝑤‘(𝑖 + 1))} ∈ (Edg‘𝐺)) ↔ (𝑤 ∈ Word 𝑉 ∧ {(𝑤‘0), (𝑤‘1)} ∈ (Edg‘𝐺)))))
4746pm5.32rd 580 . . . . . . . 8 ((𝐺 RegUSGraph 𝐾𝑃𝑉) → (((𝑤 ≠ ∅ ∧ 𝑤 ∈ Word 𝑉 ∧ ∀𝑖 ∈ (0..^((♯‘𝑤) − 1)){(𝑤𝑖), (𝑤‘(𝑖 + 1))} ∈ (Edg‘𝐺)) ∧ (♯‘𝑤) = 2) ↔ ((𝑤 ∈ Word 𝑉 ∧ {(𝑤‘0), (𝑤‘1)} ∈ (Edg‘𝐺)) ∧ (♯‘𝑤) = 2)))
4814, 47bitrd 281 . . . . . . 7 ((𝐺 RegUSGraph 𝐾𝑃𝑉) → (((𝑤 ≠ ∅ ∧ 𝑤 ∈ Word 𝑉 ∧ ∀𝑖 ∈ (0..^((♯‘𝑤) − 1)){(𝑤𝑖), (𝑤‘(𝑖 + 1))} ∈ (Edg‘𝐺)) ∧ (♯‘𝑤) = (1 + 1)) ↔ ((𝑤 ∈ Word 𝑉 ∧ {(𝑤‘0), (𝑤‘1)} ∈ (Edg‘𝐺)) ∧ (♯‘𝑤) = 2)))
4948anbi1d 631 . . . . . 6 ((𝐺 RegUSGraph 𝐾𝑃𝑉) → ((((𝑤 ≠ ∅ ∧ 𝑤 ∈ Word 𝑉 ∧ ∀𝑖 ∈ (0..^((♯‘𝑤) − 1)){(𝑤𝑖), (𝑤‘(𝑖 + 1))} ∈ (Edg‘𝐺)) ∧ (♯‘𝑤) = (1 + 1)) ∧ (𝑤‘0) = 𝑃) ↔ (((𝑤 ∈ Word 𝑉 ∧ {(𝑤‘0), (𝑤‘1)} ∈ (Edg‘𝐺)) ∧ (♯‘𝑤) = 2) ∧ (𝑤‘0) = 𝑃)))
50 anass 471 . . . . . 6 ((((𝑤 ∈ Word 𝑉 ∧ {(𝑤‘0), (𝑤‘1)} ∈ (Edg‘𝐺)) ∧ (♯‘𝑤) = 2) ∧ (𝑤‘0) = 𝑃) ↔ ((𝑤 ∈ Word 𝑉 ∧ {(𝑤‘0), (𝑤‘1)} ∈ (Edg‘𝐺)) ∧ ((♯‘𝑤) = 2 ∧ (𝑤‘0) = 𝑃)))
5149, 50syl6bb 289 . . . . 5 ((𝐺 RegUSGraph 𝐾𝑃𝑉) → ((((𝑤 ≠ ∅ ∧ 𝑤 ∈ Word 𝑉 ∧ ∀𝑖 ∈ (0..^((♯‘𝑤) − 1)){(𝑤𝑖), (𝑤‘(𝑖 + 1))} ∈ (Edg‘𝐺)) ∧ (♯‘𝑤) = (1 + 1)) ∧ (𝑤‘0) = 𝑃) ↔ ((𝑤 ∈ Word 𝑉 ∧ {(𝑤‘0), (𝑤‘1)} ∈ (Edg‘𝐺)) ∧ ((♯‘𝑤) = 2 ∧ (𝑤‘0) = 𝑃))))
52 anass 471 . . . . . . 7 (((𝑤 ∈ Word 𝑉 ∧ {(𝑤‘0), (𝑤‘1)} ∈ (Edg‘𝐺)) ∧ ((♯‘𝑤) = 2 ∧ (𝑤‘0) = 𝑃)) ↔ (𝑤 ∈ Word 𝑉 ∧ ({(𝑤‘0), (𝑤‘1)} ∈ (Edg‘𝐺) ∧ ((♯‘𝑤) = 2 ∧ (𝑤‘0) = 𝑃))))
53 ancom 463 . . . . . . . . 9 (({(𝑤‘0), (𝑤‘1)} ∈ (Edg‘𝐺) ∧ ((♯‘𝑤) = 2 ∧ (𝑤‘0) = 𝑃)) ↔ (((♯‘𝑤) = 2 ∧ (𝑤‘0) = 𝑃) ∧ {(𝑤‘0), (𝑤‘1)} ∈ (Edg‘𝐺)))
54 df-3an 1085 . . . . . . . . 9 (((♯‘𝑤) = 2 ∧ (𝑤‘0) = 𝑃 ∧ {(𝑤‘0), (𝑤‘1)} ∈ (Edg‘𝐺)) ↔ (((♯‘𝑤) = 2 ∧ (𝑤‘0) = 𝑃) ∧ {(𝑤‘0), (𝑤‘1)} ∈ (Edg‘𝐺)))
5553, 54bitr4i 280 . . . . . . . 8 (({(𝑤‘0), (𝑤‘1)} ∈ (Edg‘𝐺) ∧ ((♯‘𝑤) = 2 ∧ (𝑤‘0) = 𝑃)) ↔ ((♯‘𝑤) = 2 ∧ (𝑤‘0) = 𝑃 ∧ {(𝑤‘0), (𝑤‘1)} ∈ (Edg‘𝐺)))
5655anbi2i 624 . . . . . . 7 ((𝑤 ∈ Word 𝑉 ∧ ({(𝑤‘0), (𝑤‘1)} ∈ (Edg‘𝐺) ∧ ((♯‘𝑤) = 2 ∧ (𝑤‘0) = 𝑃))) ↔ (𝑤 ∈ Word 𝑉 ∧ ((♯‘𝑤) = 2 ∧ (𝑤‘0) = 𝑃 ∧ {(𝑤‘0), (𝑤‘1)} ∈ (Edg‘𝐺))))
5752, 56bitri 277 . . . . . 6 (((𝑤 ∈ Word 𝑉 ∧ {(𝑤‘0), (𝑤‘1)} ∈ (Edg‘𝐺)) ∧ ((♯‘𝑤) = 2 ∧ (𝑤‘0) = 𝑃)) ↔ (𝑤 ∈ Word 𝑉 ∧ ((♯‘𝑤) = 2 ∧ (𝑤‘0) = 𝑃 ∧ {(𝑤‘0), (𝑤‘1)} ∈ (Edg‘𝐺))))
5857a1i 11 . . . . 5 ((𝐺 RegUSGraph 𝐾𝑃𝑉) → (((𝑤 ∈ Word 𝑉 ∧ {(𝑤‘0), (𝑤‘1)} ∈ (Edg‘𝐺)) ∧ ((♯‘𝑤) = 2 ∧ (𝑤‘0) = 𝑃)) ↔ (𝑤 ∈ Word 𝑉 ∧ ((♯‘𝑤) = 2 ∧ (𝑤‘0) = 𝑃 ∧ {(𝑤‘0), (𝑤‘1)} ∈ (Edg‘𝐺)))))
5910, 51, 583bitrd 307 . . . 4 ((𝐺 RegUSGraph 𝐾𝑃𝑉) → ((𝑤 ∈ (1 WWalksN 𝐺) ∧ (𝑤‘0) = 𝑃) ↔ (𝑤 ∈ Word 𝑉 ∧ ((♯‘𝑤) = 2 ∧ (𝑤‘0) = 𝑃 ∧ {(𝑤‘0), (𝑤‘1)} ∈ (Edg‘𝐺)))))
6059rabbidva2 3478 . . 3 ((𝐺 RegUSGraph 𝐾𝑃𝑉) → {𝑤 ∈ (1 WWalksN 𝐺) ∣ (𝑤‘0) = 𝑃} = {𝑤 ∈ Word 𝑉 ∣ ((♯‘𝑤) = 2 ∧ (𝑤‘0) = 𝑃 ∧ {(𝑤‘0), (𝑤‘1)} ∈ (Edg‘𝐺))})
6160fveq2d 6676 . 2 ((𝐺 RegUSGraph 𝐾𝑃𝑉) → (♯‘{𝑤 ∈ (1 WWalksN 𝐺) ∣ (𝑤‘0) = 𝑃}) = (♯‘{𝑤 ∈ Word 𝑉 ∣ ((♯‘𝑤) = 2 ∧ (𝑤‘0) = 𝑃 ∧ {(𝑤‘0), (𝑤‘1)} ∈ (Edg‘𝐺))}))
624rusgrnumwrdl2 27370 . 2 ((𝐺 RegUSGraph 𝐾𝑃𝑉) → (♯‘{𝑤 ∈ Word 𝑉 ∣ ((♯‘𝑤) = 2 ∧ (𝑤‘0) = 𝑃 ∧ {(𝑤‘0), (𝑤‘1)} ∈ (Edg‘𝐺))}) = 𝐾)
6361, 62eqtrd 2858 1 ((𝐺 RegUSGraph 𝐾𝑃𝑉) → (♯‘{𝑤 ∈ (1 WWalksN 𝐺) ∣ (𝑤‘0) = 𝑃}) = 𝐾)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 208  wa 398  w3a 1083   = wceq 1537  wcel 2114  wne 3018  wral 3140  {crab 3144  c0 4293  {csn 4569  {cpr 4571   class class class wbr 5068  cfv 6357  (class class class)co 7158  0cc0 10539  1c1 10540   + caddc 10542  cmin 10872  2c2 11695  0cn0 11900  ..^cfzo 13036  chash 13693  Word cword 13864  Vtxcvtx 26783  Edgcedg 26834   RegUSGraph crusgr 27340  WWalkscwwlks 27605   WWalksN cwwlksn 27606
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-rep 5192  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463  ax-cnex 10595  ax-resscn 10596  ax-1cn 10597  ax-icn 10598  ax-addcl 10599  ax-addrcl 10600  ax-mulcl 10601  ax-mulrcl 10602  ax-mulcom 10603  ax-addass 10604  ax-mulass 10605  ax-distr 10606  ax-i2m1 10607  ax-1ne0 10608  ax-1rid 10609  ax-rnegex 10610  ax-rrecex 10611  ax-cnre 10612  ax-pre-lttri 10613  ax-pre-lttrn 10614  ax-pre-ltadd 10615  ax-pre-mulgt0 10616
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-fal 1550  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-nel 3126  df-ral 3145  df-rex 3146  df-reu 3147  df-rmo 3148  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-pss 3956  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-tp 4574  df-op 4576  df-uni 4841  df-int 4879  df-iun 4923  df-br 5069  df-opab 5131  df-mpt 5149  df-tr 5175  df-id 5462  df-eprel 5467  df-po 5476  df-so 5477  df-fr 5516  df-we 5518  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-pred 6150  df-ord 6196  df-on 6197  df-lim 6198  df-suc 6199  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-riota 7116  df-ov 7161  df-oprab 7162  df-mpo 7163  df-om 7583  df-1st 7691  df-2nd 7692  df-wrecs 7949  df-recs 8010  df-rdg 8048  df-1o 8104  df-2o 8105  df-oadd 8108  df-er 8291  df-map 8410  df-en 8512  df-dom 8513  df-sdom 8514  df-fin 8515  df-dju 9332  df-card 9370  df-pnf 10679  df-mnf 10680  df-xr 10681  df-ltxr 10682  df-le 10683  df-sub 10874  df-neg 10875  df-nn 11641  df-2 11703  df-n0 11901  df-xnn0 11971  df-z 11985  df-uz 12247  df-xadd 12511  df-fz 12896  df-fzo 13037  df-hash 13694  df-word 13865  df-edg 26835  df-uhgr 26845  df-ushgr 26846  df-upgr 26869  df-umgr 26870  df-uspgr 26937  df-usgr 26938  df-nbgr 27117  df-vtxdg 27250  df-rgr 27341  df-rusgr 27342  df-wwlks 27610  df-wwlksn 27611
This theorem is referenced by:  rusgrnumwwlkb1  27753
  Copyright terms: Public domain W3C validator