MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rusgrpropadjvtx Structured version   Visualization version   GIF version

Theorem rusgrpropadjvtx 27294
Description: The properties of a k-regular simple graph expressed with adjacent vertices. (Contributed by Alexander van der Vekens, 26-Jul-2018.) (Revised by AV, 27-Dec-2020.)
Hypothesis
Ref Expression
rusgrpropnb.v 𝑉 = (Vtx‘𝐺)
Assertion
Ref Expression
rusgrpropadjvtx (𝐺 RegUSGraph 𝐾 → (𝐺 ∈ USGraph ∧ 𝐾 ∈ ℕ0* ∧ ∀𝑣𝑉 (♯‘{𝑘𝑉 ∣ {𝑣, 𝑘} ∈ (Edg‘𝐺)}) = 𝐾))
Distinct variable groups:   𝑣,𝐺   𝑣,𝐾   𝑘,𝐺,𝑣   𝑘,𝑉
Allowed substitution hints:   𝐾(𝑘)   𝑉(𝑣)

Proof of Theorem rusgrpropadjvtx
StepHypRef Expression
1 rusgrpropnb.v . . 3 𝑉 = (Vtx‘𝐺)
21rusgrpropnb 27292 . 2 (𝐺 RegUSGraph 𝐾 → (𝐺 ∈ USGraph ∧ 𝐾 ∈ ℕ0* ∧ ∀𝑣𝑉 (♯‘(𝐺 NeighbVtx 𝑣)) = 𝐾))
3 simp1 1128 . . 3 ((𝐺 ∈ USGraph ∧ 𝐾 ∈ ℕ0* ∧ ∀𝑣𝑉 (♯‘(𝐺 NeighbVtx 𝑣)) = 𝐾) → 𝐺 ∈ USGraph)
4 simp2 1129 . . 3 ((𝐺 ∈ USGraph ∧ 𝐾 ∈ ℕ0* ∧ ∀𝑣𝑉 (♯‘(𝐺 NeighbVtx 𝑣)) = 𝐾) → 𝐾 ∈ ℕ0*)
5 eqid 2818 . . . . . . . . . . . 12 (Edg‘𝐺) = (Edg‘𝐺)
61, 5nbusgrvtx 27057 . . . . . . . . . . 11 ((𝐺 ∈ USGraph ∧ 𝑣𝑉) → (𝐺 NeighbVtx 𝑣) = {𝑘𝑉 ∣ {𝑣, 𝑘} ∈ (Edg‘𝐺)})
76fveq2d 6667 . . . . . . . . . 10 ((𝐺 ∈ USGraph ∧ 𝑣𝑉) → (♯‘(𝐺 NeighbVtx 𝑣)) = (♯‘{𝑘𝑉 ∣ {𝑣, 𝑘} ∈ (Edg‘𝐺)}))
87eqcomd 2824 . . . . . . . . 9 ((𝐺 ∈ USGraph ∧ 𝑣𝑉) → (♯‘{𝑘𝑉 ∣ {𝑣, 𝑘} ∈ (Edg‘𝐺)}) = (♯‘(𝐺 NeighbVtx 𝑣)))
98adantr 481 . . . . . . . 8 (((𝐺 ∈ USGraph ∧ 𝑣𝑉) ∧ (♯‘(𝐺 NeighbVtx 𝑣)) = 𝐾) → (♯‘{𝑘𝑉 ∣ {𝑣, 𝑘} ∈ (Edg‘𝐺)}) = (♯‘(𝐺 NeighbVtx 𝑣)))
10 simpr 485 . . . . . . . 8 (((𝐺 ∈ USGraph ∧ 𝑣𝑉) ∧ (♯‘(𝐺 NeighbVtx 𝑣)) = 𝐾) → (♯‘(𝐺 NeighbVtx 𝑣)) = 𝐾)
119, 10eqtrd 2853 . . . . . . 7 (((𝐺 ∈ USGraph ∧ 𝑣𝑉) ∧ (♯‘(𝐺 NeighbVtx 𝑣)) = 𝐾) → (♯‘{𝑘𝑉 ∣ {𝑣, 𝑘} ∈ (Edg‘𝐺)}) = 𝐾)
1211ex 413 . . . . . 6 ((𝐺 ∈ USGraph ∧ 𝑣𝑉) → ((♯‘(𝐺 NeighbVtx 𝑣)) = 𝐾 → (♯‘{𝑘𝑉 ∣ {𝑣, 𝑘} ∈ (Edg‘𝐺)}) = 𝐾))
1312ralimdva 3174 . . . . 5 (𝐺 ∈ USGraph → (∀𝑣𝑉 (♯‘(𝐺 NeighbVtx 𝑣)) = 𝐾 → ∀𝑣𝑉 (♯‘{𝑘𝑉 ∣ {𝑣, 𝑘} ∈ (Edg‘𝐺)}) = 𝐾))
1413imp 407 . . . 4 ((𝐺 ∈ USGraph ∧ ∀𝑣𝑉 (♯‘(𝐺 NeighbVtx 𝑣)) = 𝐾) → ∀𝑣𝑉 (♯‘{𝑘𝑉 ∣ {𝑣, 𝑘} ∈ (Edg‘𝐺)}) = 𝐾)
15143adant2 1123 . . 3 ((𝐺 ∈ USGraph ∧ 𝐾 ∈ ℕ0* ∧ ∀𝑣𝑉 (♯‘(𝐺 NeighbVtx 𝑣)) = 𝐾) → ∀𝑣𝑉 (♯‘{𝑘𝑉 ∣ {𝑣, 𝑘} ∈ (Edg‘𝐺)}) = 𝐾)
163, 4, 153jca 1120 . 2 ((𝐺 ∈ USGraph ∧ 𝐾 ∈ ℕ0* ∧ ∀𝑣𝑉 (♯‘(𝐺 NeighbVtx 𝑣)) = 𝐾) → (𝐺 ∈ USGraph ∧ 𝐾 ∈ ℕ0* ∧ ∀𝑣𝑉 (♯‘{𝑘𝑉 ∣ {𝑣, 𝑘} ∈ (Edg‘𝐺)}) = 𝐾))
172, 16syl 17 1 (𝐺 RegUSGraph 𝐾 → (𝐺 ∈ USGraph ∧ 𝐾 ∈ ℕ0* ∧ ∀𝑣𝑉 (♯‘{𝑘𝑉 ∣ {𝑣, 𝑘} ∈ (Edg‘𝐺)}) = 𝐾))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  w3a 1079   = wceq 1528  wcel 2105  wral 3135  {crab 3139  {cpr 4559   class class class wbr 5057  cfv 6348  (class class class)co 7145  0*cxnn0 11955  chash 13678  Vtxcvtx 26708  Edgcedg 26759  USGraphcusgr 26861   NeighbVtx cnbgr 27041   RegUSGraph crusgr 27265
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1787  ax-4 1801  ax-5 1902  ax-6 1961  ax-7 2006  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2151  ax-12 2167  ax-ext 2790  ax-rep 5181  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7450  ax-cnex 10581  ax-resscn 10582  ax-1cn 10583  ax-icn 10584  ax-addcl 10585  ax-addrcl 10586  ax-mulcl 10587  ax-mulrcl 10588  ax-mulcom 10589  ax-addass 10590  ax-mulass 10591  ax-distr 10592  ax-i2m1 10593  ax-1ne0 10594  ax-1rid 10595  ax-rnegex 10596  ax-rrecex 10597  ax-cnre 10598  ax-pre-lttri 10599  ax-pre-lttrn 10600  ax-pre-ltadd 10601  ax-pre-mulgt0 10602
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 842  df-3or 1080  df-3an 1081  df-tru 1531  df-fal 1541  df-ex 1772  df-nf 1776  df-sb 2061  df-mo 2615  df-eu 2647  df-clab 2797  df-cleq 2811  df-clel 2890  df-nfc 2960  df-ne 3014  df-nel 3121  df-ral 3140  df-rex 3141  df-reu 3142  df-rmo 3143  df-rab 3144  df-v 3494  df-sbc 3770  df-csb 3881  df-dif 3936  df-un 3938  df-in 3940  df-ss 3949  df-pss 3951  df-nul 4289  df-if 4464  df-pw 4537  df-sn 4558  df-pr 4560  df-tp 4562  df-op 4564  df-uni 4831  df-int 4868  df-iun 4912  df-br 5058  df-opab 5120  df-mpt 5138  df-tr 5164  df-id 5453  df-eprel 5458  df-po 5467  df-so 5468  df-fr 5507  df-we 5509  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-pred 6141  df-ord 6187  df-on 6188  df-lim 6189  df-suc 6190  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-riota 7103  df-ov 7148  df-oprab 7149  df-mpo 7150  df-om 7570  df-1st 7678  df-2nd 7679  df-wrecs 7936  df-recs 7997  df-rdg 8035  df-1o 8091  df-2o 8092  df-oadd 8095  df-er 8278  df-en 8498  df-dom 8499  df-sdom 8500  df-fin 8501  df-dju 9318  df-card 9356  df-pnf 10665  df-mnf 10666  df-xr 10667  df-ltxr 10668  df-le 10669  df-sub 10860  df-neg 10861  df-nn 11627  df-2 11688  df-n0 11886  df-xnn0 11956  df-z 11970  df-uz 12232  df-xadd 12496  df-fz 12881  df-hash 13679  df-edg 26760  df-uhgr 26770  df-ushgr 26771  df-upgr 26794  df-umgr 26795  df-uspgr 26862  df-usgr 26863  df-nbgr 27042  df-vtxdg 27175  df-rgr 27266  df-rusgr 27267
This theorem is referenced by:  rusgrnumwrdl2  27295  rusgrnumwwlks  27680
  Copyright terms: Public domain W3C validator