MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  s3sndisj Structured version   Visualization version   GIF version

Theorem s3sndisj 14319
Description: The singletons consisting of length 3 strings which have distinct third symbols are disjunct. (Contributed by AV, 17-May-2021.)
Assertion
Ref Expression
s3sndisj ((𝐴𝑋𝐵𝑌) → Disj 𝑐𝑍 {⟨“𝐴𝐵𝑐”⟩})
Distinct variable groups:   𝐴,𝑐   𝐵,𝑐   𝑋,𝑐   𝑌,𝑐   𝑍,𝑐

Proof of Theorem s3sndisj
Dummy variable 𝑑 is distinct from all other variables.
StepHypRef Expression
1 orc 863 . . . . 5 (𝑐 = 𝑑 → (𝑐 = 𝑑 ∨ ({⟨“𝐴𝐵𝑐”⟩} ∩ {⟨“𝐴𝐵𝑑”⟩}) = ∅))
21a1d 25 . . . 4 (𝑐 = 𝑑 → (((𝐴𝑋𝐵𝑌) ∧ (𝑐𝑍𝑑𝑍)) → (𝑐 = 𝑑 ∨ ({⟨“𝐴𝐵𝑐”⟩} ∩ {⟨“𝐴𝐵𝑑”⟩}) = ∅)))
3 s3cli 14235 . . . . . . . . . . . 12 ⟨“𝐴𝐵𝑐”⟩ ∈ Word V
4 elex 3511 . . . . . . . . . . . . . . 15 (𝐴𝑋𝐴 ∈ V)
5 elex 3511 . . . . . . . . . . . . . . 15 (𝐵𝑌𝐵 ∈ V)
64, 5anim12i 614 . . . . . . . . . . . . . 14 ((𝐴𝑋𝐵𝑌) → (𝐴 ∈ V ∧ 𝐵 ∈ V))
7 elex 3511 . . . . . . . . . . . . . . 15 (𝑑𝑍𝑑 ∈ V)
87adantl 484 . . . . . . . . . . . . . 14 ((𝑐𝑍𝑑𝑍) → 𝑑 ∈ V)
96, 8anim12i 614 . . . . . . . . . . . . 13 (((𝐴𝑋𝐵𝑌) ∧ (𝑐𝑍𝑑𝑍)) → ((𝐴 ∈ V ∧ 𝐵 ∈ V) ∧ 𝑑 ∈ V))
10 df-3an 1083 . . . . . . . . . . . . 13 ((𝐴 ∈ V ∧ 𝐵 ∈ V ∧ 𝑑 ∈ V) ↔ ((𝐴 ∈ V ∧ 𝐵 ∈ V) ∧ 𝑑 ∈ V))
119, 10sylibr 236 . . . . . . . . . . . 12 (((𝐴𝑋𝐵𝑌) ∧ (𝑐𝑍𝑑𝑍)) → (𝐴 ∈ V ∧ 𝐵 ∈ V ∧ 𝑑 ∈ V))
12 eqwrds3 14317 . . . . . . . . . . . 12 ((⟨“𝐴𝐵𝑐”⟩ ∈ Word V ∧ (𝐴 ∈ V ∧ 𝐵 ∈ V ∧ 𝑑 ∈ V)) → (⟨“𝐴𝐵𝑐”⟩ = ⟨“𝐴𝐵𝑑”⟩ ↔ ((♯‘⟨“𝐴𝐵𝑐”⟩) = 3 ∧ ((⟨“𝐴𝐵𝑐”⟩‘0) = 𝐴 ∧ (⟨“𝐴𝐵𝑐”⟩‘1) = 𝐵 ∧ (⟨“𝐴𝐵𝑐”⟩‘2) = 𝑑))))
133, 11, 12sylancr 589 . . . . . . . . . . 11 (((𝐴𝑋𝐵𝑌) ∧ (𝑐𝑍𝑑𝑍)) → (⟨“𝐴𝐵𝑐”⟩ = ⟨“𝐴𝐵𝑑”⟩ ↔ ((♯‘⟨“𝐴𝐵𝑐”⟩) = 3 ∧ ((⟨“𝐴𝐵𝑐”⟩‘0) = 𝐴 ∧ (⟨“𝐴𝐵𝑐”⟩‘1) = 𝐵 ∧ (⟨“𝐴𝐵𝑐”⟩‘2) = 𝑑))))
14 s3fv2 14247 . . . . . . . . . . . . . 14 (𝑐 ∈ V → (⟨“𝐴𝐵𝑐”⟩‘2) = 𝑐)
1514elv 3498 . . . . . . . . . . . . 13 (⟨“𝐴𝐵𝑐”⟩‘2) = 𝑐
16 simp3 1132 . . . . . . . . . . . . 13 (((⟨“𝐴𝐵𝑐”⟩‘0) = 𝐴 ∧ (⟨“𝐴𝐵𝑐”⟩‘1) = 𝐵 ∧ (⟨“𝐴𝐵𝑐”⟩‘2) = 𝑑) → (⟨“𝐴𝐵𝑐”⟩‘2) = 𝑑)
1715, 16syl5eqr 2868 . . . . . . . . . . . 12 (((⟨“𝐴𝐵𝑐”⟩‘0) = 𝐴 ∧ (⟨“𝐴𝐵𝑐”⟩‘1) = 𝐵 ∧ (⟨“𝐴𝐵𝑐”⟩‘2) = 𝑑) → 𝑐 = 𝑑)
1817adantl 484 . . . . . . . . . . 11 (((♯‘⟨“𝐴𝐵𝑐”⟩) = 3 ∧ ((⟨“𝐴𝐵𝑐”⟩‘0) = 𝐴 ∧ (⟨“𝐴𝐵𝑐”⟩‘1) = 𝐵 ∧ (⟨“𝐴𝐵𝑐”⟩‘2) = 𝑑)) → 𝑐 = 𝑑)
1913, 18syl6bi 255 . . . . . . . . . 10 (((𝐴𝑋𝐵𝑌) ∧ (𝑐𝑍𝑑𝑍)) → (⟨“𝐴𝐵𝑐”⟩ = ⟨“𝐴𝐵𝑑”⟩ → 𝑐 = 𝑑))
2019con3rr3 158 . . . . . . . . 9 𝑐 = 𝑑 → (((𝐴𝑋𝐵𝑌) ∧ (𝑐𝑍𝑑𝑍)) → ¬ ⟨“𝐴𝐵𝑐”⟩ = ⟨“𝐴𝐵𝑑”⟩))
2120imp 409 . . . . . . . 8 ((¬ 𝑐 = 𝑑 ∧ ((𝐴𝑋𝐵𝑌) ∧ (𝑐𝑍𝑑𝑍))) → ¬ ⟨“𝐴𝐵𝑐”⟩ = ⟨“𝐴𝐵𝑑”⟩)
2221neqned 3021 . . . . . . 7 ((¬ 𝑐 = 𝑑 ∧ ((𝐴𝑋𝐵𝑌) ∧ (𝑐𝑍𝑑𝑍))) → ⟨“𝐴𝐵𝑐”⟩ ≠ ⟨“𝐴𝐵𝑑”⟩)
23 disjsn2 4640 . . . . . . 7 (⟨“𝐴𝐵𝑐”⟩ ≠ ⟨“𝐴𝐵𝑑”⟩ → ({⟨“𝐴𝐵𝑐”⟩} ∩ {⟨“𝐴𝐵𝑑”⟩}) = ∅)
2422, 23syl 17 . . . . . 6 ((¬ 𝑐 = 𝑑 ∧ ((𝐴𝑋𝐵𝑌) ∧ (𝑐𝑍𝑑𝑍))) → ({⟨“𝐴𝐵𝑐”⟩} ∩ {⟨“𝐴𝐵𝑑”⟩}) = ∅)
2524olcd 872 . . . . 5 ((¬ 𝑐 = 𝑑 ∧ ((𝐴𝑋𝐵𝑌) ∧ (𝑐𝑍𝑑𝑍))) → (𝑐 = 𝑑 ∨ ({⟨“𝐴𝐵𝑐”⟩} ∩ {⟨“𝐴𝐵𝑑”⟩}) = ∅))
2625ex 415 . . . 4 𝑐 = 𝑑 → (((𝐴𝑋𝐵𝑌) ∧ (𝑐𝑍𝑑𝑍)) → (𝑐 = 𝑑 ∨ ({⟨“𝐴𝐵𝑐”⟩} ∩ {⟨“𝐴𝐵𝑑”⟩}) = ∅)))
272, 26pm2.61i 184 . . 3 (((𝐴𝑋𝐵𝑌) ∧ (𝑐𝑍𝑑𝑍)) → (𝑐 = 𝑑 ∨ ({⟨“𝐴𝐵𝑐”⟩} ∩ {⟨“𝐴𝐵𝑑”⟩}) = ∅))
2827ralrimivva 3189 . 2 ((𝐴𝑋𝐵𝑌) → ∀𝑐𝑍𝑑𝑍 (𝑐 = 𝑑 ∨ ({⟨“𝐴𝐵𝑐”⟩} ∩ {⟨“𝐴𝐵𝑑”⟩}) = ∅))
29 eqidd 2820 . . . . 5 (𝑐 = 𝑑𝐴 = 𝐴)
30 eqidd 2820 . . . . 5 (𝑐 = 𝑑𝐵 = 𝐵)
31 id 22 . . . . 5 (𝑐 = 𝑑𝑐 = 𝑑)
3229, 30, 31s3eqd 14218 . . . 4 (𝑐 = 𝑑 → ⟨“𝐴𝐵𝑐”⟩ = ⟨“𝐴𝐵𝑑”⟩)
3332sneqd 4571 . . 3 (𝑐 = 𝑑 → {⟨“𝐴𝐵𝑐”⟩} = {⟨“𝐴𝐵𝑑”⟩})
3433disjor 5037 . 2 (Disj 𝑐𝑍 {⟨“𝐴𝐵𝑐”⟩} ↔ ∀𝑐𝑍𝑑𝑍 (𝑐 = 𝑑 ∨ ({⟨“𝐴𝐵𝑐”⟩} ∩ {⟨“𝐴𝐵𝑑”⟩}) = ∅))
3528, 34sylibr 236 1 ((𝐴𝑋𝐵𝑌) → Disj 𝑐𝑍 {⟨“𝐴𝐵𝑐”⟩})
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 208  wa 398  wo 843  w3a 1081   = wceq 1530  wcel 2107  wne 3014  wral 3136  Vcvv 3493  cin 3933  c0 4289  {csn 4559  Disj wdisj 5022  cfv 6348  0cc0 10529  1c1 10530  2c2 11684  3c3 11685  chash 13682  Word cword 13853  ⟨“cs3 14196
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1904  ax-6 1963  ax-7 2008  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2153  ax-12 2169  ax-ext 2791  ax-rep 5181  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7453  ax-cnex 10585  ax-resscn 10586  ax-1cn 10587  ax-icn 10588  ax-addcl 10589  ax-addrcl 10590  ax-mulcl 10591  ax-mulrcl 10592  ax-mulcom 10593  ax-addass 10594  ax-mulass 10595  ax-distr 10596  ax-i2m1 10597  ax-1ne0 10598  ax-1rid 10599  ax-rnegex 10600  ax-rrecex 10601  ax-cnre 10602  ax-pre-lttri 10603  ax-pre-lttrn 10604  ax-pre-ltadd 10605  ax-pre-mulgt0 10606
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1082  df-3an 1083  df-tru 1533  df-ex 1774  df-nf 1778  df-sb 2063  df-mo 2616  df-eu 2648  df-clab 2798  df-cleq 2812  df-clel 2891  df-nfc 2961  df-ne 3015  df-nel 3122  df-ral 3141  df-rex 3142  df-reu 3143  df-rmo 3144  df-rab 3145  df-v 3495  df-sbc 3771  df-csb 3882  df-dif 3937  df-un 3939  df-in 3941  df-ss 3950  df-pss 3952  df-nul 4290  df-if 4466  df-pw 4539  df-sn 4560  df-pr 4562  df-tp 4564  df-op 4566  df-uni 4831  df-int 4868  df-iun 4912  df-disj 5023  df-br 5058  df-opab 5120  df-mpt 5138  df-tr 5164  df-id 5453  df-eprel 5458  df-po 5467  df-so 5468  df-fr 5507  df-we 5509  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-pred 6141  df-ord 6187  df-on 6188  df-lim 6189  df-suc 6190  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-riota 7106  df-ov 7151  df-oprab 7152  df-mpo 7153  df-om 7573  df-1st 7681  df-2nd 7682  df-wrecs 7939  df-recs 8000  df-rdg 8038  df-1o 8094  df-oadd 8098  df-er 8281  df-en 8502  df-dom 8503  df-sdom 8504  df-fin 8505  df-card 9360  df-pnf 10669  df-mnf 10670  df-xr 10671  df-ltxr 10672  df-le 10673  df-sub 10864  df-neg 10865  df-nn 11631  df-2 11692  df-3 11693  df-n0 11890  df-z 11974  df-uz 12236  df-fz 12885  df-fzo 13026  df-hash 13683  df-word 13854  df-concat 13915  df-s1 13942  df-s2 14202  df-s3 14203
This theorem is referenced by:  fusgreghash2wspv  28106
  Copyright terms: Public domain W3C validator