Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  s3wwlks2on Structured version   Visualization version   GIF version

Theorem s3wwlks2on 26718
 Description: A length 3 string which represents a walk of length 2 between two vertices. (Contributed by Alexander van der Vekens, 15-Feb-2018.) (Revised by AV, 12-May-2021.)
Hypothesis
Ref Expression
s3wwlks2on.v 𝑉 = (Vtx‘𝐺)
Assertion
Ref Expression
s3wwlks2on ((𝐺 ∈ UPGraph ∧ 𝐴𝑉𝐶𝑉) → (⟨“𝐴𝐵𝐶”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐶) ↔ ∃𝑓(𝑓(Walks‘𝐺)⟨“𝐴𝐵𝐶”⟩ ∧ (#‘𝑓) = 2)))
Distinct variable groups:   𝐴,𝑓   𝐵,𝑓   𝐶,𝑓   𝑓,𝐺
Allowed substitution hint:   𝑉(𝑓)

Proof of Theorem s3wwlks2on
StepHypRef Expression
1 s3wwlks2on.v . . . 4 𝑉 = (Vtx‘𝐺)
21wwlknon 26611 . . 3 ((𝐴𝑉𝐶𝑉) → (⟨“𝐴𝐵𝐶”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐶) ↔ (⟨“𝐴𝐵𝐶”⟩ ∈ (2 WWalksN 𝐺) ∧ (⟨“𝐴𝐵𝐶”⟩‘0) = 𝐴 ∧ (⟨“𝐴𝐵𝐶”⟩‘2) = 𝐶)))
323adant1 1077 . 2 ((𝐺 ∈ UPGraph ∧ 𝐴𝑉𝐶𝑉) → (⟨“𝐴𝐵𝐶”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐶) ↔ (⟨“𝐴𝐵𝐶”⟩ ∈ (2 WWalksN 𝐺) ∧ (⟨“𝐴𝐵𝐶”⟩‘0) = 𝐴 ∧ (⟨“𝐴𝐵𝐶”⟩‘2) = 𝐶)))
4 s3fv0 13572 . . . . . 6 (𝐴𝑉 → (⟨“𝐴𝐵𝐶”⟩‘0) = 𝐴)
5 s3fv2 13574 . . . . . 6 (𝐶𝑉 → (⟨“𝐴𝐵𝐶”⟩‘2) = 𝐶)
64, 5anim12i 589 . . . . 5 ((𝐴𝑉𝐶𝑉) → ((⟨“𝐴𝐵𝐶”⟩‘0) = 𝐴 ∧ (⟨“𝐴𝐵𝐶”⟩‘2) = 𝐶))
763adant1 1077 . . . 4 ((𝐺 ∈ UPGraph ∧ 𝐴𝑉𝐶𝑉) → ((⟨“𝐴𝐵𝐶”⟩‘0) = 𝐴 ∧ (⟨“𝐴𝐵𝐶”⟩‘2) = 𝐶))
87biantrud 528 . . 3 ((𝐺 ∈ UPGraph ∧ 𝐴𝑉𝐶𝑉) → (⟨“𝐴𝐵𝐶”⟩ ∈ (2 WWalksN 𝐺) ↔ (⟨“𝐴𝐵𝐶”⟩ ∈ (2 WWalksN 𝐺) ∧ ((⟨“𝐴𝐵𝐶”⟩‘0) = 𝐴 ∧ (⟨“𝐴𝐵𝐶”⟩‘2) = 𝐶))))
9 3anass 1040 . . 3 ((⟨“𝐴𝐵𝐶”⟩ ∈ (2 WWalksN 𝐺) ∧ (⟨“𝐴𝐵𝐶”⟩‘0) = 𝐴 ∧ (⟨“𝐴𝐵𝐶”⟩‘2) = 𝐶) ↔ (⟨“𝐴𝐵𝐶”⟩ ∈ (2 WWalksN 𝐺) ∧ ((⟨“𝐴𝐵𝐶”⟩‘0) = 𝐴 ∧ (⟨“𝐴𝐵𝐶”⟩‘2) = 𝐶)))
108, 9syl6rbbr 279 . 2 ((𝐺 ∈ UPGraph ∧ 𝐴𝑉𝐶𝑉) → ((⟨“𝐴𝐵𝐶”⟩ ∈ (2 WWalksN 𝐺) ∧ (⟨“𝐴𝐵𝐶”⟩‘0) = 𝐴 ∧ (⟨“𝐴𝐵𝐶”⟩‘2) = 𝐶) ↔ ⟨“𝐴𝐵𝐶”⟩ ∈ (2 WWalksN 𝐺)))
11 wlklnwwlknupgr 26641 . . . 4 (𝐺 ∈ UPGraph → (∃𝑓(𝑓(Walks‘𝐺)⟨“𝐴𝐵𝐶”⟩ ∧ (#‘𝑓) = 2) ↔ ⟨“𝐴𝐵𝐶”⟩ ∈ (2 WWalksN 𝐺)))
1211bicomd 213 . . 3 (𝐺 ∈ UPGraph → (⟨“𝐴𝐵𝐶”⟩ ∈ (2 WWalksN 𝐺) ↔ ∃𝑓(𝑓(Walks‘𝐺)⟨“𝐴𝐵𝐶”⟩ ∧ (#‘𝑓) = 2)))
13123ad2ant1 1080 . 2 ((𝐺 ∈ UPGraph ∧ 𝐴𝑉𝐶𝑉) → (⟨“𝐴𝐵𝐶”⟩ ∈ (2 WWalksN 𝐺) ↔ ∃𝑓(𝑓(Walks‘𝐺)⟨“𝐴𝐵𝐶”⟩ ∧ (#‘𝑓) = 2)))
143, 10, 133bitrd 294 1 ((𝐺 ∈ UPGraph ∧ 𝐴𝑉𝐶𝑉) → (⟨“𝐴𝐵𝐶”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐶) ↔ ∃𝑓(𝑓(Walks‘𝐺)⟨“𝐴𝐵𝐶”⟩ ∧ (#‘𝑓) = 2)))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 196   ∧ wa 384   ∧ w3a 1036   = wceq 1480  ∃wex 1701   ∈ wcel 1987   class class class wbr 4613  ‘cfv 5847  (class class class)co 6604  0cc0 9880  2c2 11014  #chash 13057  ⟨“cs3 13524  Vtxcvtx 25774   UPGraph cupgr 25871  Walkscwlks 26362   WWalksN cwwlksn 26587   WWalksNOn cwwlksnon 26588 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4731  ax-sep 4741  ax-nul 4749  ax-pow 4803  ax-pr 4867  ax-un 6902  ax-ac2 9229  ax-cnex 9936  ax-resscn 9937  ax-1cn 9938  ax-icn 9939  ax-addcl 9940  ax-addrcl 9941  ax-mulcl 9942  ax-mulrcl 9943  ax-mulcom 9944  ax-addass 9945  ax-mulass 9946  ax-distr 9947  ax-i2m1 9948  ax-1ne0 9949  ax-1rid 9950  ax-rnegex 9951  ax-rrecex 9952  ax-cnre 9953  ax-pre-lttri 9954  ax-pre-lttrn 9955  ax-pre-ltadd 9956  ax-pre-mulgt0 9957 This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-ifp 1012  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-reu 2914  df-rmo 2915  df-rab 2916  df-v 3188  df-sbc 3418  df-csb 3515  df-dif 3558  df-un 3560  df-in 3562  df-ss 3569  df-pss 3571  df-nul 3892  df-if 4059  df-pw 4132  df-sn 4149  df-pr 4151  df-tp 4153  df-op 4155  df-uni 4403  df-int 4441  df-iun 4487  df-br 4614  df-opab 4674  df-mpt 4675  df-tr 4713  df-eprel 4985  df-id 4989  df-po 4995  df-so 4996  df-fr 5033  df-se 5034  df-we 5035  df-xp 5080  df-rel 5081  df-cnv 5082  df-co 5083  df-dm 5084  df-rn 5085  df-res 5086  df-ima 5087  df-pred 5639  df-ord 5685  df-on 5686  df-lim 5687  df-suc 5688  df-iota 5810  df-fun 5849  df-fn 5850  df-f 5851  df-f1 5852  df-fo 5853  df-f1o 5854  df-fv 5855  df-isom 5856  df-riota 6565  df-ov 6607  df-oprab 6608  df-mpt2 6609  df-om 7013  df-1st 7113  df-2nd 7114  df-wrecs 7352  df-recs 7413  df-rdg 7451  df-1o 7505  df-2o 7506  df-oadd 7509  df-er 7687  df-map 7804  df-pm 7805  df-en 7900  df-dom 7901  df-sdom 7902  df-fin 7903  df-card 8709  df-ac 8883  df-cda 8934  df-pnf 10020  df-mnf 10021  df-xr 10022  df-ltxr 10023  df-le 10024  df-sub 10212  df-neg 10213  df-nn 10965  df-2 11023  df-n0 11237  df-xnn0 11308  df-z 11322  df-uz 11632  df-fz 12269  df-fzo 12407  df-hash 13058  df-word 13238  df-concat 13240  df-s1 13241  df-s2 13530  df-s3 13531  df-edg 25840  df-uhgr 25849  df-upgr 25873  df-wlks 26365  df-wwlks 26591  df-wwlksn 26592  df-wwlksnon 26593 This theorem is referenced by:  umgrwwlks2on  26719  elwwlks2on  26720
 Copyright terms: Public domain W3C validator