MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  s4eqd Structured version   Visualization version   GIF version

Theorem s4eqd 13407
Description: Equality theorem for a length 4 word. (Contributed by Mario Carneiro, 27-Feb-2016.)
Hypotheses
Ref Expression
s2eqd.1 (𝜑𝐴 = 𝑁)
s2eqd.2 (𝜑𝐵 = 𝑂)
s3eqd.3 (𝜑𝐶 = 𝑃)
s4eqd.4 (𝜑𝐷 = 𝑄)
Assertion
Ref Expression
s4eqd (𝜑 → ⟨“𝐴𝐵𝐶𝐷”⟩ = ⟨“𝑁𝑂𝑃𝑄”⟩)

Proof of Theorem s4eqd
StepHypRef Expression
1 s2eqd.1 . . . 4 (𝜑𝐴 = 𝑁)
2 s2eqd.2 . . . 4 (𝜑𝐵 = 𝑂)
3 s3eqd.3 . . . 4 (𝜑𝐶 = 𝑃)
41, 2, 3s3eqd 13406 . . 3 (𝜑 → ⟨“𝐴𝐵𝐶”⟩ = ⟨“𝑁𝑂𝑃”⟩)
5 s4eqd.4 . . . 4 (𝜑𝐷 = 𝑄)
65s1eqd 13180 . . 3 (𝜑 → ⟨“𝐷”⟩ = ⟨“𝑄”⟩)
74, 6oveq12d 6545 . 2 (𝜑 → (⟨“𝐴𝐵𝐶”⟩ ++ ⟨“𝐷”⟩) = (⟨“𝑁𝑂𝑃”⟩ ++ ⟨“𝑄”⟩))
8 df-s4 13392 . 2 ⟨“𝐴𝐵𝐶𝐷”⟩ = (⟨“𝐴𝐵𝐶”⟩ ++ ⟨“𝐷”⟩)
9 df-s4 13392 . 2 ⟨“𝑁𝑂𝑃𝑄”⟩ = (⟨“𝑁𝑂𝑃”⟩ ++ ⟨“𝑄”⟩)
107, 8, 93eqtr4g 2668 1 (𝜑 → ⟨“𝐴𝐵𝐶𝐷”⟩ = ⟨“𝑁𝑂𝑃𝑄”⟩)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1474  (class class class)co 6527   ++ cconcat 13094  ⟨“cs1 13095  ⟨“cs3 13384  ⟨“cs4 13385
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1712  ax-4 1727  ax-5 1826  ax-6 1874  ax-7 1921  ax-10 2005  ax-11 2020  ax-12 2033  ax-13 2233  ax-ext 2589
This theorem depends on definitions:  df-bi 195  df-or 383  df-an 384  df-3an 1032  df-tru 1477  df-ex 1695  df-nf 1700  df-sb 1867  df-clab 2596  df-cleq 2602  df-clel 2605  df-nfc 2739  df-rex 2901  df-rab 2904  df-v 3174  df-dif 3542  df-un 3544  df-in 3546  df-ss 3553  df-nul 3874  df-if 4036  df-sn 4125  df-pr 4127  df-op 4131  df-uni 4367  df-br 4578  df-iota 5754  df-fv 5798  df-ov 6530  df-s1 13103  df-s2 13390  df-s3 13391  df-s4 13392
This theorem is referenced by:  s5eqd  13408
  Copyright terms: Public domain W3C validator