MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  s6eqd Structured version   Visualization version   GIF version

Theorem s6eqd 13406
Description: Equality theorem for a length 6 word. (Contributed by Mario Carneiro, 27-Feb-2016.)
Hypotheses
Ref Expression
s2eqd.1 (𝜑𝐴 = 𝑁)
s2eqd.2 (𝜑𝐵 = 𝑂)
s3eqd.3 (𝜑𝐶 = 𝑃)
s4eqd.4 (𝜑𝐷 = 𝑄)
s5eqd.5 (𝜑𝐸 = 𝑅)
s6eqd.6 (𝜑𝐹 = 𝑆)
Assertion
Ref Expression
s6eqd (𝜑 → ⟨“𝐴𝐵𝐶𝐷𝐸𝐹”⟩ = ⟨“𝑁𝑂𝑃𝑄𝑅𝑆”⟩)

Proof of Theorem s6eqd
StepHypRef Expression
1 s2eqd.1 . . . 4 (𝜑𝐴 = 𝑁)
2 s2eqd.2 . . . 4 (𝜑𝐵 = 𝑂)
3 s3eqd.3 . . . 4 (𝜑𝐶 = 𝑃)
4 s4eqd.4 . . . 4 (𝜑𝐷 = 𝑄)
5 s5eqd.5 . . . 4 (𝜑𝐸 = 𝑅)
61, 2, 3, 4, 5s5eqd 13405 . . 3 (𝜑 → ⟨“𝐴𝐵𝐶𝐷𝐸”⟩ = ⟨“𝑁𝑂𝑃𝑄𝑅”⟩)
7 s6eqd.6 . . . 4 (𝜑𝐹 = 𝑆)
87s1eqd 13177 . . 3 (𝜑 → ⟨“𝐹”⟩ = ⟨“𝑆”⟩)
96, 8oveq12d 6542 . 2 (𝜑 → (⟨“𝐴𝐵𝐶𝐷𝐸”⟩ ++ ⟨“𝐹”⟩) = (⟨“𝑁𝑂𝑃𝑄𝑅”⟩ ++ ⟨“𝑆”⟩))
10 df-s6 13391 . 2 ⟨“𝐴𝐵𝐶𝐷𝐸𝐹”⟩ = (⟨“𝐴𝐵𝐶𝐷𝐸”⟩ ++ ⟨“𝐹”⟩)
11 df-s6 13391 . 2 ⟨“𝑁𝑂𝑃𝑄𝑅𝑆”⟩ = (⟨“𝑁𝑂𝑃𝑄𝑅”⟩ ++ ⟨“𝑆”⟩)
129, 10, 113eqtr4g 2665 1 (𝜑 → ⟨“𝐴𝐵𝐶𝐷𝐸𝐹”⟩ = ⟨“𝑁𝑂𝑃𝑄𝑅𝑆”⟩)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1474  (class class class)co 6524   ++ cconcat 13091  ⟨“cs1 13092  ⟨“cs5 13383  ⟨“cs6 13384
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1712  ax-4 1727  ax-5 1826  ax-6 1874  ax-7 1921  ax-10 2005  ax-11 2020  ax-12 2032  ax-13 2229  ax-ext 2586
This theorem depends on definitions:  df-bi 195  df-or 383  df-an 384  df-3an 1032  df-tru 1477  df-ex 1695  df-nf 1700  df-sb 1867  df-clab 2593  df-cleq 2599  df-clel 2602  df-nfc 2736  df-rex 2898  df-rab 2901  df-v 3171  df-dif 3539  df-un 3541  df-in 3543  df-ss 3550  df-nul 3871  df-if 4033  df-sn 4122  df-pr 4124  df-op 4128  df-uni 4364  df-br 4575  df-iota 5751  df-fv 5795  df-ov 6527  df-s1 13100  df-s2 13387  df-s3 13388  df-s4 13389  df-s5 13390  df-s6 13391
This theorem is referenced by:  s7eqd  13407
  Copyright terms: Public domain W3C validator