MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sadadd Structured version   Visualization version   GIF version

Theorem sadadd 15132
Description: For sequences that correspond to valid integers, the adder sequence function produces the sequence for the sum. This is effectively a proof of the correctness of the ripple carry adder, implemented with logic gates corresponding to df-had 1530 and df-cad 1543.

It is interesting to consider in what sense the sadd function can be said to be "adding" things outside the range of the bits function, that is, when adding sequences that are not eventually constant and so do not denote any integer. The correct interpretation is that the sequences are representations of 2-adic integers, which have a natural ring structure. (Contributed by Mario Carneiro, 9-Sep-2016.)

Assertion
Ref Expression
sadadd ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → ((bits‘𝐴) sadd (bits‘𝐵)) = (bits‘(𝐴 + 𝐵)))

Proof of Theorem sadadd
Dummy variables 𝑘 𝑐 𝑚 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 bitsss 15091 . . . . . 6 (bits‘𝐴) ⊆ ℕ0
2 bitsss 15091 . . . . . 6 (bits‘𝐵) ⊆ ℕ0
3 sadcl 15127 . . . . . 6 (((bits‘𝐴) ⊆ ℕ0 ∧ (bits‘𝐵) ⊆ ℕ0) → ((bits‘𝐴) sadd (bits‘𝐵)) ⊆ ℕ0)
41, 2, 3mp2an 707 . . . . 5 ((bits‘𝐴) sadd (bits‘𝐵)) ⊆ ℕ0
54sseli 3584 . . . 4 (𝑘 ∈ ((bits‘𝐴) sadd (bits‘𝐵)) → 𝑘 ∈ ℕ0)
65a1i 11 . . 3 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝑘 ∈ ((bits‘𝐴) sadd (bits‘𝐵)) → 𝑘 ∈ ℕ0))
7 bitsss 15091 . . . . 5 (bits‘(𝐴 + 𝐵)) ⊆ ℕ0
87sseli 3584 . . . 4 (𝑘 ∈ (bits‘(𝐴 + 𝐵)) → 𝑘 ∈ ℕ0)
98a1i 11 . . 3 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝑘 ∈ (bits‘(𝐴 + 𝐵)) → 𝑘 ∈ ℕ0))
10 eqid 2621 . . . . . . . . 9 seq0((𝑐 ∈ 2𝑜, 𝑚 ∈ ℕ0 ↦ if(cadd(𝑚 ∈ (bits‘𝐴), 𝑚 ∈ (bits‘𝐵), ∅ ∈ 𝑐), 1𝑜, ∅)), (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1)))) = seq0((𝑐 ∈ 2𝑜, 𝑚 ∈ ℕ0 ↦ if(cadd(𝑚 ∈ (bits‘𝐴), 𝑚 ∈ (bits‘𝐵), ∅ ∈ 𝑐), 1𝑜, ∅)), (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1))))
11 eqid 2621 . . . . . . . . 9 (bits ↾ ℕ0) = (bits ↾ ℕ0)
12 simpll 789 . . . . . . . . 9 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝑘 ∈ ℕ0) → 𝐴 ∈ ℤ)
13 simplr 791 . . . . . . . . 9 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝑘 ∈ ℕ0) → 𝐵 ∈ ℤ)
14 simpr 477 . . . . . . . . . 10 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝑘 ∈ ℕ0) → 𝑘 ∈ ℕ0)
15 1nn0 11268 . . . . . . . . . . 11 1 ∈ ℕ0
1615a1i 11 . . . . . . . . . 10 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝑘 ∈ ℕ0) → 1 ∈ ℕ0)
1714, 16nn0addcld 11315 . . . . . . . . 9 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝑘 ∈ ℕ0) → (𝑘 + 1) ∈ ℕ0)
1810, 11, 12, 13, 17sadaddlem 15131 . . . . . . . 8 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝑘 ∈ ℕ0) → (((bits‘𝐴) sadd (bits‘𝐵)) ∩ (0..^(𝑘 + 1))) = (bits‘((𝐴 + 𝐵) mod (2↑(𝑘 + 1)))))
1912, 13zaddcld 11446 . . . . . . . . 9 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝑘 ∈ ℕ0) → (𝐴 + 𝐵) ∈ ℤ)
20 bitsmod 15101 . . . . . . . . 9 (((𝐴 + 𝐵) ∈ ℤ ∧ (𝑘 + 1) ∈ ℕ0) → (bits‘((𝐴 + 𝐵) mod (2↑(𝑘 + 1)))) = ((bits‘(𝐴 + 𝐵)) ∩ (0..^(𝑘 + 1))))
2119, 17, 20syl2anc 692 . . . . . . . 8 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝑘 ∈ ℕ0) → (bits‘((𝐴 + 𝐵) mod (2↑(𝑘 + 1)))) = ((bits‘(𝐴 + 𝐵)) ∩ (0..^(𝑘 + 1))))
2218, 21eqtrd 2655 . . . . . . 7 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝑘 ∈ ℕ0) → (((bits‘𝐴) sadd (bits‘𝐵)) ∩ (0..^(𝑘 + 1))) = ((bits‘(𝐴 + 𝐵)) ∩ (0..^(𝑘 + 1))))
2322eleq2d 2684 . . . . . 6 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝑘 ∈ ℕ0) → (𝑘 ∈ (((bits‘𝐴) sadd (bits‘𝐵)) ∩ (0..^(𝑘 + 1))) ↔ 𝑘 ∈ ((bits‘(𝐴 + 𝐵)) ∩ (0..^(𝑘 + 1)))))
24 elin 3780 . . . . . 6 (𝑘 ∈ (((bits‘𝐴) sadd (bits‘𝐵)) ∩ (0..^(𝑘 + 1))) ↔ (𝑘 ∈ ((bits‘𝐴) sadd (bits‘𝐵)) ∧ 𝑘 ∈ (0..^(𝑘 + 1))))
25 elin 3780 . . . . . 6 (𝑘 ∈ ((bits‘(𝐴 + 𝐵)) ∩ (0..^(𝑘 + 1))) ↔ (𝑘 ∈ (bits‘(𝐴 + 𝐵)) ∧ 𝑘 ∈ (0..^(𝑘 + 1))))
2623, 24, 253bitr3g 302 . . . . 5 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝑘 ∈ ℕ0) → ((𝑘 ∈ ((bits‘𝐴) sadd (bits‘𝐵)) ∧ 𝑘 ∈ (0..^(𝑘 + 1))) ↔ (𝑘 ∈ (bits‘(𝐴 + 𝐵)) ∧ 𝑘 ∈ (0..^(𝑘 + 1)))))
27 nn0uz 11682 . . . . . . . . 9 0 = (ℤ‘0)
2814, 27syl6eleq 2708 . . . . . . . 8 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝑘 ∈ ℕ0) → 𝑘 ∈ (ℤ‘0))
29 eluzfz2 12307 . . . . . . . 8 (𝑘 ∈ (ℤ‘0) → 𝑘 ∈ (0...𝑘))
3028, 29syl 17 . . . . . . 7 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝑘 ∈ ℕ0) → 𝑘 ∈ (0...𝑘))
3114nn0zd 11440 . . . . . . . 8 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝑘 ∈ ℕ0) → 𝑘 ∈ ℤ)
32 fzval3 12493 . . . . . . . 8 (𝑘 ∈ ℤ → (0...𝑘) = (0..^(𝑘 + 1)))
3331, 32syl 17 . . . . . . 7 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝑘 ∈ ℕ0) → (0...𝑘) = (0..^(𝑘 + 1)))
3430, 33eleqtrd 2700 . . . . . 6 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝑘 ∈ ℕ0) → 𝑘 ∈ (0..^(𝑘 + 1)))
3534biantrud 528 . . . . 5 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝑘 ∈ ℕ0) → (𝑘 ∈ ((bits‘𝐴) sadd (bits‘𝐵)) ↔ (𝑘 ∈ ((bits‘𝐴) sadd (bits‘𝐵)) ∧ 𝑘 ∈ (0..^(𝑘 + 1)))))
3634biantrud 528 . . . . 5 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝑘 ∈ ℕ0) → (𝑘 ∈ (bits‘(𝐴 + 𝐵)) ↔ (𝑘 ∈ (bits‘(𝐴 + 𝐵)) ∧ 𝑘 ∈ (0..^(𝑘 + 1)))))
3726, 35, 363bitr4d 300 . . . 4 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝑘 ∈ ℕ0) → (𝑘 ∈ ((bits‘𝐴) sadd (bits‘𝐵)) ↔ 𝑘 ∈ (bits‘(𝐴 + 𝐵))))
3837ex 450 . . 3 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝑘 ∈ ℕ0 → (𝑘 ∈ ((bits‘𝐴) sadd (bits‘𝐵)) ↔ 𝑘 ∈ (bits‘(𝐴 + 𝐵)))))
396, 9, 38pm5.21ndd 369 . 2 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝑘 ∈ ((bits‘𝐴) sadd (bits‘𝐵)) ↔ 𝑘 ∈ (bits‘(𝐴 + 𝐵))))
4039eqrdv 2619 1 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → ((bits‘𝐴) sadd (bits‘𝐵)) = (bits‘(𝐴 + 𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384   = wceq 1480  caddwcad 1542  wcel 1987  cin 3559  wss 3560  c0 3897  ifcif 4064  cmpt 4683  ccnv 5083  cres 5086  cfv 5857  (class class class)co 6615  cmpt2 6617  1𝑜c1o 7513  2𝑜c2o 7514  0cc0 9896  1c1 9897   + caddc 9899  cmin 10226  2c2 11030  0cn0 11252  cz 11337  cuz 11647  ...cfz 12284  ..^cfzo 12422   mod cmo 12624  seqcseq 12757  cexp 12816  bitscbits 15084   sadd csad 15085
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4741  ax-sep 4751  ax-nul 4759  ax-pow 4813  ax-pr 4877  ax-un 6914  ax-inf2 8498  ax-cnex 9952  ax-resscn 9953  ax-1cn 9954  ax-icn 9955  ax-addcl 9956  ax-addrcl 9957  ax-mulcl 9958  ax-mulrcl 9959  ax-mulcom 9960  ax-addass 9961  ax-mulass 9962  ax-distr 9963  ax-i2m1 9964  ax-1ne0 9965  ax-1rid 9966  ax-rnegex 9967  ax-rrecex 9968  ax-cnre 9969  ax-pre-lttri 9970  ax-pre-lttrn 9971  ax-pre-ltadd 9972  ax-pre-mulgt0 9973  ax-pre-sup 9974
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-xor 1462  df-tru 1483  df-fal 1486  df-had 1530  df-cad 1543  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2913  df-rex 2914  df-reu 2915  df-rmo 2916  df-rab 2917  df-v 3192  df-sbc 3423  df-csb 3520  df-dif 3563  df-un 3565  df-in 3567  df-ss 3574  df-pss 3576  df-nul 3898  df-if 4065  df-pw 4138  df-sn 4156  df-pr 4158  df-tp 4160  df-op 4162  df-uni 4410  df-int 4448  df-iun 4494  df-disj 4594  df-br 4624  df-opab 4684  df-mpt 4685  df-tr 4723  df-eprel 4995  df-id 4999  df-po 5005  df-so 5006  df-fr 5043  df-se 5044  df-we 5045  df-xp 5090  df-rel 5091  df-cnv 5092  df-co 5093  df-dm 5094  df-rn 5095  df-res 5096  df-ima 5097  df-pred 5649  df-ord 5695  df-on 5696  df-lim 5697  df-suc 5698  df-iota 5820  df-fun 5859  df-fn 5860  df-f 5861  df-f1 5862  df-fo 5863  df-f1o 5864  df-fv 5865  df-isom 5866  df-riota 6576  df-ov 6618  df-oprab 6619  df-mpt2 6620  df-om 7028  df-1st 7128  df-2nd 7129  df-wrecs 7367  df-recs 7428  df-rdg 7466  df-1o 7520  df-2o 7521  df-oadd 7524  df-er 7702  df-map 7819  df-pm 7820  df-en 7916  df-dom 7917  df-sdom 7918  df-fin 7919  df-sup 8308  df-inf 8309  df-oi 8375  df-card 8725  df-cda 8950  df-pnf 10036  df-mnf 10037  df-xr 10038  df-ltxr 10039  df-le 10040  df-sub 10228  df-neg 10229  df-div 10645  df-nn 10981  df-2 11039  df-3 11040  df-n0 11253  df-xnn0 11324  df-z 11338  df-uz 11648  df-rp 11793  df-fz 12285  df-fzo 12423  df-fl 12549  df-mod 12625  df-seq 12758  df-exp 12817  df-hash 13074  df-cj 13789  df-re 13790  df-im 13791  df-sqrt 13925  df-abs 13926  df-clim 14169  df-sum 14367  df-dvds 14927  df-bits 15087  df-sad 15116
This theorem is referenced by:  bitsres  15138  smumullem  15157
  Copyright terms: Public domain W3C validator