MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sadadd2 Structured version   Visualization version   GIF version

Theorem sadadd2 14962
Description: Sum of initial segments of the sadd sequence. (Contributed by Mario Carneiro, 8-Sep-2016.)
Hypotheses
Ref Expression
sadval.a (𝜑𝐴 ⊆ ℕ0)
sadval.b (𝜑𝐵 ⊆ ℕ0)
sadval.c 𝐶 = seq0((𝑐 ∈ 2𝑜, 𝑚 ∈ ℕ0 ↦ if(cadd(𝑚𝐴, 𝑚𝐵, ∅ ∈ 𝑐), 1𝑜, ∅)), (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1))))
sadcp1.n (𝜑𝑁 ∈ ℕ0)
sadcadd.k 𝐾 = (bits ↾ ℕ0)
Assertion
Ref Expression
sadadd2 (𝜑 → ((𝐾‘((𝐴 sadd 𝐵) ∩ (0..^𝑁))) + if(∅ ∈ (𝐶𝑁), (2↑𝑁), 0)) = ((𝐾‘(𝐴 ∩ (0..^𝑁))) + (𝐾‘(𝐵 ∩ (0..^𝑁)))))
Distinct variable groups:   𝑚,𝑐,𝑛   𝐴,𝑐,𝑚   𝐵,𝑐,𝑚   𝑛,𝑁
Allowed substitution hints:   𝜑(𝑚,𝑛,𝑐)   𝐴(𝑛)   𝐵(𝑛)   𝐶(𝑚,𝑛,𝑐)   𝐾(𝑚,𝑛,𝑐)   𝑁(𝑚,𝑐)

Proof of Theorem sadadd2
Dummy variables 𝑘 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 sadcp1.n . 2 (𝜑𝑁 ∈ ℕ0)
2 oveq2 6531 . . . . . . . . . . 11 (𝑥 = 0 → (0..^𝑥) = (0..^0))
3 fzo0 12312 . . . . . . . . . . 11 (0..^0) = ∅
42, 3syl6eq 2655 . . . . . . . . . 10 (𝑥 = 0 → (0..^𝑥) = ∅)
54ineq2d 3771 . . . . . . . . 9 (𝑥 = 0 → ((𝐴 sadd 𝐵) ∩ (0..^𝑥)) = ((𝐴 sadd 𝐵) ∩ ∅))
6 in0 3915 . . . . . . . . 9 ((𝐴 sadd 𝐵) ∩ ∅) = ∅
75, 6syl6eq 2655 . . . . . . . 8 (𝑥 = 0 → ((𝐴 sadd 𝐵) ∩ (0..^𝑥)) = ∅)
87fveq2d 6088 . . . . . . 7 (𝑥 = 0 → (𝐾‘((𝐴 sadd 𝐵) ∩ (0..^𝑥))) = (𝐾‘∅))
9 sadcadd.k . . . . . . . . 9 𝐾 = (bits ↾ ℕ0)
10 0nn0 11150 . . . . . . . . . . 11 0 ∈ ℕ0
11 fvres 6098 . . . . . . . . . . 11 (0 ∈ ℕ0 → ((bits ↾ ℕ0)‘0) = (bits‘0))
1210, 11ax-mp 5 . . . . . . . . . 10 ((bits ↾ ℕ0)‘0) = (bits‘0)
13 0bits 14941 . . . . . . . . . 10 (bits‘0) = ∅
1412, 13eqtr2i 2628 . . . . . . . . 9 ∅ = ((bits ↾ ℕ0)‘0)
159, 14fveq12i 6089 . . . . . . . 8 (𝐾‘∅) = ((bits ↾ ℕ0)‘((bits ↾ ℕ0)‘0))
16 bitsf1o 14947 . . . . . . . . 9 (bits ↾ ℕ0):ℕ01-1-onto→(𝒫 ℕ0 ∩ Fin)
17 f1ocnvfv1 6406 . . . . . . . . 9 (((bits ↾ ℕ0):ℕ01-1-onto→(𝒫 ℕ0 ∩ Fin) ∧ 0 ∈ ℕ0) → ((bits ↾ ℕ0)‘((bits ↾ ℕ0)‘0)) = 0)
1816, 10, 17mp2an 703 . . . . . . . 8 ((bits ↾ ℕ0)‘((bits ↾ ℕ0)‘0)) = 0
1915, 18eqtri 2627 . . . . . . 7 (𝐾‘∅) = 0
208, 19syl6eq 2655 . . . . . 6 (𝑥 = 0 → (𝐾‘((𝐴 sadd 𝐵) ∩ (0..^𝑥))) = 0)
21 fveq2 6084 . . . . . . . 8 (𝑥 = 0 → (𝐶𝑥) = (𝐶‘0))
2221eleq2d 2668 . . . . . . 7 (𝑥 = 0 → (∅ ∈ (𝐶𝑥) ↔ ∅ ∈ (𝐶‘0)))
23 oveq2 6531 . . . . . . 7 (𝑥 = 0 → (2↑𝑥) = (2↑0))
2422, 23ifbieq1d 4054 . . . . . 6 (𝑥 = 0 → if(∅ ∈ (𝐶𝑥), (2↑𝑥), 0) = if(∅ ∈ (𝐶‘0), (2↑0), 0))
2520, 24oveq12d 6541 . . . . 5 (𝑥 = 0 → ((𝐾‘((𝐴 sadd 𝐵) ∩ (0..^𝑥))) + if(∅ ∈ (𝐶𝑥), (2↑𝑥), 0)) = (0 + if(∅ ∈ (𝐶‘0), (2↑0), 0)))
264ineq2d 3771 . . . . . . . . . 10 (𝑥 = 0 → (𝐴 ∩ (0..^𝑥)) = (𝐴 ∩ ∅))
27 in0 3915 . . . . . . . . . 10 (𝐴 ∩ ∅) = ∅
2826, 27syl6eq 2655 . . . . . . . . 9 (𝑥 = 0 → (𝐴 ∩ (0..^𝑥)) = ∅)
2928fveq2d 6088 . . . . . . . 8 (𝑥 = 0 → (𝐾‘(𝐴 ∩ (0..^𝑥))) = (𝐾‘∅))
3029, 19syl6eq 2655 . . . . . . 7 (𝑥 = 0 → (𝐾‘(𝐴 ∩ (0..^𝑥))) = 0)
314ineq2d 3771 . . . . . . . . . 10 (𝑥 = 0 → (𝐵 ∩ (0..^𝑥)) = (𝐵 ∩ ∅))
32 in0 3915 . . . . . . . . . 10 (𝐵 ∩ ∅) = ∅
3331, 32syl6eq 2655 . . . . . . . . 9 (𝑥 = 0 → (𝐵 ∩ (0..^𝑥)) = ∅)
3433fveq2d 6088 . . . . . . . 8 (𝑥 = 0 → (𝐾‘(𝐵 ∩ (0..^𝑥))) = (𝐾‘∅))
3534, 19syl6eq 2655 . . . . . . 7 (𝑥 = 0 → (𝐾‘(𝐵 ∩ (0..^𝑥))) = 0)
3630, 35oveq12d 6541 . . . . . 6 (𝑥 = 0 → ((𝐾‘(𝐴 ∩ (0..^𝑥))) + (𝐾‘(𝐵 ∩ (0..^𝑥)))) = (0 + 0))
37 00id 10058 . . . . . 6 (0 + 0) = 0
3836, 37syl6eq 2655 . . . . 5 (𝑥 = 0 → ((𝐾‘(𝐴 ∩ (0..^𝑥))) + (𝐾‘(𝐵 ∩ (0..^𝑥)))) = 0)
3925, 38eqeq12d 2620 . . . 4 (𝑥 = 0 → (((𝐾‘((𝐴 sadd 𝐵) ∩ (0..^𝑥))) + if(∅ ∈ (𝐶𝑥), (2↑𝑥), 0)) = ((𝐾‘(𝐴 ∩ (0..^𝑥))) + (𝐾‘(𝐵 ∩ (0..^𝑥)))) ↔ (0 + if(∅ ∈ (𝐶‘0), (2↑0), 0)) = 0))
4039imbi2d 328 . . 3 (𝑥 = 0 → ((𝜑 → ((𝐾‘((𝐴 sadd 𝐵) ∩ (0..^𝑥))) + if(∅ ∈ (𝐶𝑥), (2↑𝑥), 0)) = ((𝐾‘(𝐴 ∩ (0..^𝑥))) + (𝐾‘(𝐵 ∩ (0..^𝑥))))) ↔ (𝜑 → (0 + if(∅ ∈ (𝐶‘0), (2↑0), 0)) = 0)))
41 oveq2 6531 . . . . . . . 8 (𝑥 = 𝑘 → (0..^𝑥) = (0..^𝑘))
4241ineq2d 3771 . . . . . . 7 (𝑥 = 𝑘 → ((𝐴 sadd 𝐵) ∩ (0..^𝑥)) = ((𝐴 sadd 𝐵) ∩ (0..^𝑘)))
4342fveq2d 6088 . . . . . 6 (𝑥 = 𝑘 → (𝐾‘((𝐴 sadd 𝐵) ∩ (0..^𝑥))) = (𝐾‘((𝐴 sadd 𝐵) ∩ (0..^𝑘))))
44 fveq2 6084 . . . . . . . 8 (𝑥 = 𝑘 → (𝐶𝑥) = (𝐶𝑘))
4544eleq2d 2668 . . . . . . 7 (𝑥 = 𝑘 → (∅ ∈ (𝐶𝑥) ↔ ∅ ∈ (𝐶𝑘)))
46 oveq2 6531 . . . . . . 7 (𝑥 = 𝑘 → (2↑𝑥) = (2↑𝑘))
4745, 46ifbieq1d 4054 . . . . . 6 (𝑥 = 𝑘 → if(∅ ∈ (𝐶𝑥), (2↑𝑥), 0) = if(∅ ∈ (𝐶𝑘), (2↑𝑘), 0))
4843, 47oveq12d 6541 . . . . 5 (𝑥 = 𝑘 → ((𝐾‘((𝐴 sadd 𝐵) ∩ (0..^𝑥))) + if(∅ ∈ (𝐶𝑥), (2↑𝑥), 0)) = ((𝐾‘((𝐴 sadd 𝐵) ∩ (0..^𝑘))) + if(∅ ∈ (𝐶𝑘), (2↑𝑘), 0)))
4941ineq2d 3771 . . . . . . 7 (𝑥 = 𝑘 → (𝐴 ∩ (0..^𝑥)) = (𝐴 ∩ (0..^𝑘)))
5049fveq2d 6088 . . . . . 6 (𝑥 = 𝑘 → (𝐾‘(𝐴 ∩ (0..^𝑥))) = (𝐾‘(𝐴 ∩ (0..^𝑘))))
5141ineq2d 3771 . . . . . . 7 (𝑥 = 𝑘 → (𝐵 ∩ (0..^𝑥)) = (𝐵 ∩ (0..^𝑘)))
5251fveq2d 6088 . . . . . 6 (𝑥 = 𝑘 → (𝐾‘(𝐵 ∩ (0..^𝑥))) = (𝐾‘(𝐵 ∩ (0..^𝑘))))
5350, 52oveq12d 6541 . . . . 5 (𝑥 = 𝑘 → ((𝐾‘(𝐴 ∩ (0..^𝑥))) + (𝐾‘(𝐵 ∩ (0..^𝑥)))) = ((𝐾‘(𝐴 ∩ (0..^𝑘))) + (𝐾‘(𝐵 ∩ (0..^𝑘)))))
5448, 53eqeq12d 2620 . . . 4 (𝑥 = 𝑘 → (((𝐾‘((𝐴 sadd 𝐵) ∩ (0..^𝑥))) + if(∅ ∈ (𝐶𝑥), (2↑𝑥), 0)) = ((𝐾‘(𝐴 ∩ (0..^𝑥))) + (𝐾‘(𝐵 ∩ (0..^𝑥)))) ↔ ((𝐾‘((𝐴 sadd 𝐵) ∩ (0..^𝑘))) + if(∅ ∈ (𝐶𝑘), (2↑𝑘), 0)) = ((𝐾‘(𝐴 ∩ (0..^𝑘))) + (𝐾‘(𝐵 ∩ (0..^𝑘))))))
5554imbi2d 328 . . 3 (𝑥 = 𝑘 → ((𝜑 → ((𝐾‘((𝐴 sadd 𝐵) ∩ (0..^𝑥))) + if(∅ ∈ (𝐶𝑥), (2↑𝑥), 0)) = ((𝐾‘(𝐴 ∩ (0..^𝑥))) + (𝐾‘(𝐵 ∩ (0..^𝑥))))) ↔ (𝜑 → ((𝐾‘((𝐴 sadd 𝐵) ∩ (0..^𝑘))) + if(∅ ∈ (𝐶𝑘), (2↑𝑘), 0)) = ((𝐾‘(𝐴 ∩ (0..^𝑘))) + (𝐾‘(𝐵 ∩ (0..^𝑘)))))))
56 oveq2 6531 . . . . . . . 8 (𝑥 = (𝑘 + 1) → (0..^𝑥) = (0..^(𝑘 + 1)))
5756ineq2d 3771 . . . . . . 7 (𝑥 = (𝑘 + 1) → ((𝐴 sadd 𝐵) ∩ (0..^𝑥)) = ((𝐴 sadd 𝐵) ∩ (0..^(𝑘 + 1))))
5857fveq2d 6088 . . . . . 6 (𝑥 = (𝑘 + 1) → (𝐾‘((𝐴 sadd 𝐵) ∩ (0..^𝑥))) = (𝐾‘((𝐴 sadd 𝐵) ∩ (0..^(𝑘 + 1)))))
59 fveq2 6084 . . . . . . . 8 (𝑥 = (𝑘 + 1) → (𝐶𝑥) = (𝐶‘(𝑘 + 1)))
6059eleq2d 2668 . . . . . . 7 (𝑥 = (𝑘 + 1) → (∅ ∈ (𝐶𝑥) ↔ ∅ ∈ (𝐶‘(𝑘 + 1))))
61 oveq2 6531 . . . . . . 7 (𝑥 = (𝑘 + 1) → (2↑𝑥) = (2↑(𝑘 + 1)))
6260, 61ifbieq1d 4054 . . . . . 6 (𝑥 = (𝑘 + 1) → if(∅ ∈ (𝐶𝑥), (2↑𝑥), 0) = if(∅ ∈ (𝐶‘(𝑘 + 1)), (2↑(𝑘 + 1)), 0))
6358, 62oveq12d 6541 . . . . 5 (𝑥 = (𝑘 + 1) → ((𝐾‘((𝐴 sadd 𝐵) ∩ (0..^𝑥))) + if(∅ ∈ (𝐶𝑥), (2↑𝑥), 0)) = ((𝐾‘((𝐴 sadd 𝐵) ∩ (0..^(𝑘 + 1)))) + if(∅ ∈ (𝐶‘(𝑘 + 1)), (2↑(𝑘 + 1)), 0)))
6456ineq2d 3771 . . . . . . 7 (𝑥 = (𝑘 + 1) → (𝐴 ∩ (0..^𝑥)) = (𝐴 ∩ (0..^(𝑘 + 1))))
6564fveq2d 6088 . . . . . 6 (𝑥 = (𝑘 + 1) → (𝐾‘(𝐴 ∩ (0..^𝑥))) = (𝐾‘(𝐴 ∩ (0..^(𝑘 + 1)))))
6656ineq2d 3771 . . . . . . 7 (𝑥 = (𝑘 + 1) → (𝐵 ∩ (0..^𝑥)) = (𝐵 ∩ (0..^(𝑘 + 1))))
6766fveq2d 6088 . . . . . 6 (𝑥 = (𝑘 + 1) → (𝐾‘(𝐵 ∩ (0..^𝑥))) = (𝐾‘(𝐵 ∩ (0..^(𝑘 + 1)))))
6865, 67oveq12d 6541 . . . . 5 (𝑥 = (𝑘 + 1) → ((𝐾‘(𝐴 ∩ (0..^𝑥))) + (𝐾‘(𝐵 ∩ (0..^𝑥)))) = ((𝐾‘(𝐴 ∩ (0..^(𝑘 + 1)))) + (𝐾‘(𝐵 ∩ (0..^(𝑘 + 1))))))
6963, 68eqeq12d 2620 . . . 4 (𝑥 = (𝑘 + 1) → (((𝐾‘((𝐴 sadd 𝐵) ∩ (0..^𝑥))) + if(∅ ∈ (𝐶𝑥), (2↑𝑥), 0)) = ((𝐾‘(𝐴 ∩ (0..^𝑥))) + (𝐾‘(𝐵 ∩ (0..^𝑥)))) ↔ ((𝐾‘((𝐴 sadd 𝐵) ∩ (0..^(𝑘 + 1)))) + if(∅ ∈ (𝐶‘(𝑘 + 1)), (2↑(𝑘 + 1)), 0)) = ((𝐾‘(𝐴 ∩ (0..^(𝑘 + 1)))) + (𝐾‘(𝐵 ∩ (0..^(𝑘 + 1)))))))
7069imbi2d 328 . . 3 (𝑥 = (𝑘 + 1) → ((𝜑 → ((𝐾‘((𝐴 sadd 𝐵) ∩ (0..^𝑥))) + if(∅ ∈ (𝐶𝑥), (2↑𝑥), 0)) = ((𝐾‘(𝐴 ∩ (0..^𝑥))) + (𝐾‘(𝐵 ∩ (0..^𝑥))))) ↔ (𝜑 → ((𝐾‘((𝐴 sadd 𝐵) ∩ (0..^(𝑘 + 1)))) + if(∅ ∈ (𝐶‘(𝑘 + 1)), (2↑(𝑘 + 1)), 0)) = ((𝐾‘(𝐴 ∩ (0..^(𝑘 + 1)))) + (𝐾‘(𝐵 ∩ (0..^(𝑘 + 1))))))))
71 oveq2 6531 . . . . . . . 8 (𝑥 = 𝑁 → (0..^𝑥) = (0..^𝑁))
7271ineq2d 3771 . . . . . . 7 (𝑥 = 𝑁 → ((𝐴 sadd 𝐵) ∩ (0..^𝑥)) = ((𝐴 sadd 𝐵) ∩ (0..^𝑁)))
7372fveq2d 6088 . . . . . 6 (𝑥 = 𝑁 → (𝐾‘((𝐴 sadd 𝐵) ∩ (0..^𝑥))) = (𝐾‘((𝐴 sadd 𝐵) ∩ (0..^𝑁))))
74 fveq2 6084 . . . . . . . 8 (𝑥 = 𝑁 → (𝐶𝑥) = (𝐶𝑁))
7574eleq2d 2668 . . . . . . 7 (𝑥 = 𝑁 → (∅ ∈ (𝐶𝑥) ↔ ∅ ∈ (𝐶𝑁)))
76 oveq2 6531 . . . . . . 7 (𝑥 = 𝑁 → (2↑𝑥) = (2↑𝑁))
7775, 76ifbieq1d 4054 . . . . . 6 (𝑥 = 𝑁 → if(∅ ∈ (𝐶𝑥), (2↑𝑥), 0) = if(∅ ∈ (𝐶𝑁), (2↑𝑁), 0))
7873, 77oveq12d 6541 . . . . 5 (𝑥 = 𝑁 → ((𝐾‘((𝐴 sadd 𝐵) ∩ (0..^𝑥))) + if(∅ ∈ (𝐶𝑥), (2↑𝑥), 0)) = ((𝐾‘((𝐴 sadd 𝐵) ∩ (0..^𝑁))) + if(∅ ∈ (𝐶𝑁), (2↑𝑁), 0)))
7971ineq2d 3771 . . . . . . 7 (𝑥 = 𝑁 → (𝐴 ∩ (0..^𝑥)) = (𝐴 ∩ (0..^𝑁)))
8079fveq2d 6088 . . . . . 6 (𝑥 = 𝑁 → (𝐾‘(𝐴 ∩ (0..^𝑥))) = (𝐾‘(𝐴 ∩ (0..^𝑁))))
8171ineq2d 3771 . . . . . . 7 (𝑥 = 𝑁 → (𝐵 ∩ (0..^𝑥)) = (𝐵 ∩ (0..^𝑁)))
8281fveq2d 6088 . . . . . 6 (𝑥 = 𝑁 → (𝐾‘(𝐵 ∩ (0..^𝑥))) = (𝐾‘(𝐵 ∩ (0..^𝑁))))
8380, 82oveq12d 6541 . . . . 5 (𝑥 = 𝑁 → ((𝐾‘(𝐴 ∩ (0..^𝑥))) + (𝐾‘(𝐵 ∩ (0..^𝑥)))) = ((𝐾‘(𝐴 ∩ (0..^𝑁))) + (𝐾‘(𝐵 ∩ (0..^𝑁)))))
8478, 83eqeq12d 2620 . . . 4 (𝑥 = 𝑁 → (((𝐾‘((𝐴 sadd 𝐵) ∩ (0..^𝑥))) + if(∅ ∈ (𝐶𝑥), (2↑𝑥), 0)) = ((𝐾‘(𝐴 ∩ (0..^𝑥))) + (𝐾‘(𝐵 ∩ (0..^𝑥)))) ↔ ((𝐾‘((𝐴 sadd 𝐵) ∩ (0..^𝑁))) + if(∅ ∈ (𝐶𝑁), (2↑𝑁), 0)) = ((𝐾‘(𝐴 ∩ (0..^𝑁))) + (𝐾‘(𝐵 ∩ (0..^𝑁))))))
8584imbi2d 328 . . 3 (𝑥 = 𝑁 → ((𝜑 → ((𝐾‘((𝐴 sadd 𝐵) ∩ (0..^𝑥))) + if(∅ ∈ (𝐶𝑥), (2↑𝑥), 0)) = ((𝐾‘(𝐴 ∩ (0..^𝑥))) + (𝐾‘(𝐵 ∩ (0..^𝑥))))) ↔ (𝜑 → ((𝐾‘((𝐴 sadd 𝐵) ∩ (0..^𝑁))) + if(∅ ∈ (𝐶𝑁), (2↑𝑁), 0)) = ((𝐾‘(𝐴 ∩ (0..^𝑁))) + (𝐾‘(𝐵 ∩ (0..^𝑁)))))))
86 sadval.a . . . . . . 7 (𝜑𝐴 ⊆ ℕ0)
87 sadval.b . . . . . . 7 (𝜑𝐵 ⊆ ℕ0)
88 sadval.c . . . . . . 7 𝐶 = seq0((𝑐 ∈ 2𝑜, 𝑚 ∈ ℕ0 ↦ if(cadd(𝑚𝐴, 𝑚𝐵, ∅ ∈ 𝑐), 1𝑜, ∅)), (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1))))
8986, 87, 88sadc0 14956 . . . . . 6 (𝜑 → ¬ ∅ ∈ (𝐶‘0))
9089iffalsed 4042 . . . . 5 (𝜑 → if(∅ ∈ (𝐶‘0), (2↑0), 0) = 0)
9190oveq2d 6539 . . . 4 (𝜑 → (0 + if(∅ ∈ (𝐶‘0), (2↑0), 0)) = (0 + 0))
9291, 37syl6eq 2655 . . 3 (𝜑 → (0 + if(∅ ∈ (𝐶‘0), (2↑0), 0)) = 0)
9386ad2antrr 757 . . . . . . 7 (((𝜑𝑘 ∈ ℕ0) ∧ ((𝐾‘((𝐴 sadd 𝐵) ∩ (0..^𝑘))) + if(∅ ∈ (𝐶𝑘), (2↑𝑘), 0)) = ((𝐾‘(𝐴 ∩ (0..^𝑘))) + (𝐾‘(𝐵 ∩ (0..^𝑘))))) → 𝐴 ⊆ ℕ0)
9487ad2antrr 757 . . . . . . 7 (((𝜑𝑘 ∈ ℕ0) ∧ ((𝐾‘((𝐴 sadd 𝐵) ∩ (0..^𝑘))) + if(∅ ∈ (𝐶𝑘), (2↑𝑘), 0)) = ((𝐾‘(𝐴 ∩ (0..^𝑘))) + (𝐾‘(𝐵 ∩ (0..^𝑘))))) → 𝐵 ⊆ ℕ0)
95 simplr 787 . . . . . . 7 (((𝜑𝑘 ∈ ℕ0) ∧ ((𝐾‘((𝐴 sadd 𝐵) ∩ (0..^𝑘))) + if(∅ ∈ (𝐶𝑘), (2↑𝑘), 0)) = ((𝐾‘(𝐴 ∩ (0..^𝑘))) + (𝐾‘(𝐵 ∩ (0..^𝑘))))) → 𝑘 ∈ ℕ0)
96 simpr 475 . . . . . . 7 (((𝜑𝑘 ∈ ℕ0) ∧ ((𝐾‘((𝐴 sadd 𝐵) ∩ (0..^𝑘))) + if(∅ ∈ (𝐶𝑘), (2↑𝑘), 0)) = ((𝐾‘(𝐴 ∩ (0..^𝑘))) + (𝐾‘(𝐵 ∩ (0..^𝑘))))) → ((𝐾‘((𝐴 sadd 𝐵) ∩ (0..^𝑘))) + if(∅ ∈ (𝐶𝑘), (2↑𝑘), 0)) = ((𝐾‘(𝐴 ∩ (0..^𝑘))) + (𝐾‘(𝐵 ∩ (0..^𝑘)))))
9793, 94, 88, 95, 9, 96sadadd2lem 14961 . . . . . 6 (((𝜑𝑘 ∈ ℕ0) ∧ ((𝐾‘((𝐴 sadd 𝐵) ∩ (0..^𝑘))) + if(∅ ∈ (𝐶𝑘), (2↑𝑘), 0)) = ((𝐾‘(𝐴 ∩ (0..^𝑘))) + (𝐾‘(𝐵 ∩ (0..^𝑘))))) → ((𝐾‘((𝐴 sadd 𝐵) ∩ (0..^(𝑘 + 1)))) + if(∅ ∈ (𝐶‘(𝑘 + 1)), (2↑(𝑘 + 1)), 0)) = ((𝐾‘(𝐴 ∩ (0..^(𝑘 + 1)))) + (𝐾‘(𝐵 ∩ (0..^(𝑘 + 1))))))
9897ex 448 . . . . 5 ((𝜑𝑘 ∈ ℕ0) → (((𝐾‘((𝐴 sadd 𝐵) ∩ (0..^𝑘))) + if(∅ ∈ (𝐶𝑘), (2↑𝑘), 0)) = ((𝐾‘(𝐴 ∩ (0..^𝑘))) + (𝐾‘(𝐵 ∩ (0..^𝑘)))) → ((𝐾‘((𝐴 sadd 𝐵) ∩ (0..^(𝑘 + 1)))) + if(∅ ∈ (𝐶‘(𝑘 + 1)), (2↑(𝑘 + 1)), 0)) = ((𝐾‘(𝐴 ∩ (0..^(𝑘 + 1)))) + (𝐾‘(𝐵 ∩ (0..^(𝑘 + 1)))))))
9998expcom 449 . . . 4 (𝑘 ∈ ℕ0 → (𝜑 → (((𝐾‘((𝐴 sadd 𝐵) ∩ (0..^𝑘))) + if(∅ ∈ (𝐶𝑘), (2↑𝑘), 0)) = ((𝐾‘(𝐴 ∩ (0..^𝑘))) + (𝐾‘(𝐵 ∩ (0..^𝑘)))) → ((𝐾‘((𝐴 sadd 𝐵) ∩ (0..^(𝑘 + 1)))) + if(∅ ∈ (𝐶‘(𝑘 + 1)), (2↑(𝑘 + 1)), 0)) = ((𝐾‘(𝐴 ∩ (0..^(𝑘 + 1)))) + (𝐾‘(𝐵 ∩ (0..^(𝑘 + 1))))))))
10099a2d 29 . . 3 (𝑘 ∈ ℕ0 → ((𝜑 → ((𝐾‘((𝐴 sadd 𝐵) ∩ (0..^𝑘))) + if(∅ ∈ (𝐶𝑘), (2↑𝑘), 0)) = ((𝐾‘(𝐴 ∩ (0..^𝑘))) + (𝐾‘(𝐵 ∩ (0..^𝑘))))) → (𝜑 → ((𝐾‘((𝐴 sadd 𝐵) ∩ (0..^(𝑘 + 1)))) + if(∅ ∈ (𝐶‘(𝑘 + 1)), (2↑(𝑘 + 1)), 0)) = ((𝐾‘(𝐴 ∩ (0..^(𝑘 + 1)))) + (𝐾‘(𝐵 ∩ (0..^(𝑘 + 1))))))))
10140, 55, 70, 85, 92, 100nn0ind 11300 . 2 (𝑁 ∈ ℕ0 → (𝜑 → ((𝐾‘((𝐴 sadd 𝐵) ∩ (0..^𝑁))) + if(∅ ∈ (𝐶𝑁), (2↑𝑁), 0)) = ((𝐾‘(𝐴 ∩ (0..^𝑁))) + (𝐾‘(𝐵 ∩ (0..^𝑁))))))
1021, 101mpcom 37 1 (𝜑 → ((𝐾‘((𝐴 sadd 𝐵) ∩ (0..^𝑁))) + if(∅ ∈ (𝐶𝑁), (2↑𝑁), 0)) = ((𝐾‘(𝐴 ∩ (0..^𝑁))) + (𝐾‘(𝐵 ∩ (0..^𝑁)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 382   = wceq 1474  caddwcad 1535  wcel 1975  cin 3534  wss 3535  c0 3869  ifcif 4031  𝒫 cpw 4103  cmpt 4633  ccnv 5023  cres 5026  1-1-ontowf1o 5785  cfv 5786  (class class class)co 6523  cmpt2 6525  1𝑜c1o 7413  2𝑜c2o 7414  Fincfn 7814  0cc0 9788  1c1 9789   + caddc 9791  cmin 10113  2c2 10913  0cn0 11135  ..^cfzo 12285  seqcseq 12614  cexp 12673  bitscbits 14921   sadd csad 14922
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1711  ax-4 1726  ax-5 1825  ax-6 1873  ax-7 1920  ax-8 1977  ax-9 1984  ax-10 2004  ax-11 2019  ax-12 2031  ax-13 2228  ax-ext 2585  ax-rep 4689  ax-sep 4699  ax-nul 4708  ax-pow 4760  ax-pr 4824  ax-un 6820  ax-inf2 8394  ax-cnex 9844  ax-resscn 9845  ax-1cn 9846  ax-icn 9847  ax-addcl 9848  ax-addrcl 9849  ax-mulcl 9850  ax-mulrcl 9851  ax-mulcom 9852  ax-addass 9853  ax-mulass 9854  ax-distr 9855  ax-i2m1 9856  ax-1ne0 9857  ax-1rid 9858  ax-rnegex 9859  ax-rrecex 9860  ax-cnre 9861  ax-pre-lttri 9862  ax-pre-lttrn 9863  ax-pre-ltadd 9864  ax-pre-mulgt0 9865  ax-pre-sup 9866
This theorem depends on definitions:  df-bi 195  df-or 383  df-an 384  df-3or 1031  df-3an 1032  df-xor 1456  df-tru 1477  df-fal 1480  df-had 1523  df-cad 1536  df-ex 1695  df-nf 1700  df-sb 1866  df-eu 2457  df-mo 2458  df-clab 2592  df-cleq 2598  df-clel 2601  df-nfc 2735  df-ne 2777  df-nel 2778  df-ral 2896  df-rex 2897  df-reu 2898  df-rmo 2899  df-rab 2900  df-v 3170  df-sbc 3398  df-csb 3495  df-dif 3538  df-un 3540  df-in 3542  df-ss 3549  df-pss 3551  df-nul 3870  df-if 4032  df-pw 4105  df-sn 4121  df-pr 4123  df-tp 4125  df-op 4127  df-uni 4363  df-int 4401  df-iun 4447  df-disj 4544  df-br 4574  df-opab 4634  df-mpt 4635  df-tr 4671  df-eprel 4935  df-id 4939  df-po 4945  df-so 4946  df-fr 4983  df-se 4984  df-we 4985  df-xp 5030  df-rel 5031  df-cnv 5032  df-co 5033  df-dm 5034  df-rn 5035  df-res 5036  df-ima 5037  df-pred 5579  df-ord 5625  df-on 5626  df-lim 5627  df-suc 5628  df-iota 5750  df-fun 5788  df-fn 5789  df-f 5790  df-f1 5791  df-fo 5792  df-f1o 5793  df-fv 5794  df-isom 5795  df-riota 6485  df-ov 6526  df-oprab 6527  df-mpt2 6528  df-om 6931  df-1st 7032  df-2nd 7033  df-wrecs 7267  df-recs 7328  df-rdg 7366  df-1o 7420  df-2o 7421  df-oadd 7424  df-er 7602  df-map 7719  df-pm 7720  df-en 7815  df-dom 7816  df-sdom 7817  df-fin 7818  df-sup 8204  df-inf 8205  df-oi 8271  df-card 8621  df-cda 8846  df-pnf 9928  df-mnf 9929  df-xr 9930  df-ltxr 9931  df-le 9932  df-sub 10115  df-neg 10116  df-div 10530  df-nn 10864  df-2 10922  df-3 10923  df-n0 11136  df-z 11207  df-uz 11516  df-rp 11661  df-fz 12149  df-fzo 12286  df-fl 12406  df-mod 12482  df-seq 12615  df-exp 12674  df-hash 12931  df-cj 13629  df-re 13630  df-im 13631  df-sqrt 13765  df-abs 13766  df-clim 14009  df-sum 14207  df-dvds 14764  df-bits 14924  df-sad 14953
This theorem is referenced by:  sadadd3  14963
  Copyright terms: Public domain W3C validator