MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sadadd3 Structured version   Visualization version   GIF version

Theorem sadadd3 15804
Description: Sum of initial segments of the sadd sequence. (Contributed by Mario Carneiro, 9-Sep-2016.)
Hypotheses
Ref Expression
sadval.a (𝜑𝐴 ⊆ ℕ0)
sadval.b (𝜑𝐵 ⊆ ℕ0)
sadval.c 𝐶 = seq0((𝑐 ∈ 2o, 𝑚 ∈ ℕ0 ↦ if(cadd(𝑚𝐴, 𝑚𝐵, ∅ ∈ 𝑐), 1o, ∅)), (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1))))
sadcp1.n (𝜑𝑁 ∈ ℕ0)
sadcadd.k 𝐾 = (bits ↾ ℕ0)
Assertion
Ref Expression
sadadd3 (𝜑 → ((𝐾‘((𝐴 sadd 𝐵) ∩ (0..^𝑁))) mod (2↑𝑁)) = (((𝐾‘(𝐴 ∩ (0..^𝑁))) + (𝐾‘(𝐵 ∩ (0..^𝑁)))) mod (2↑𝑁)))
Distinct variable groups:   𝑚,𝑐,𝑛   𝐴,𝑐,𝑚   𝐵,𝑐,𝑚   𝑛,𝑁
Allowed substitution hints:   𝜑(𝑚,𝑛,𝑐)   𝐴(𝑛)   𝐵(𝑛)   𝐶(𝑚,𝑛,𝑐)   𝐾(𝑚,𝑛,𝑐)   𝑁(𝑚,𝑐)

Proof of Theorem sadadd3
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 2nn 11704 . . . . . . . . 9 2 ∈ ℕ
21a1i 11 . . . . . . . 8 (𝜑 → 2 ∈ ℕ)
3 sadcp1.n . . . . . . . 8 (𝜑𝑁 ∈ ℕ0)
42, 3nnexpcld 13600 . . . . . . 7 (𝜑 → (2↑𝑁) ∈ ℕ)
54nnzd 12080 . . . . . 6 (𝜑 → (2↑𝑁) ∈ ℤ)
6 iddvds 15617 . . . . . 6 ((2↑𝑁) ∈ ℤ → (2↑𝑁) ∥ (2↑𝑁))
75, 6syl 17 . . . . 5 (𝜑 → (2↑𝑁) ∥ (2↑𝑁))
8 dvds0 15619 . . . . . 6 ((2↑𝑁) ∈ ℤ → (2↑𝑁) ∥ 0)
95, 8syl 17 . . . . 5 (𝜑 → (2↑𝑁) ∥ 0)
10 breq2 5062 . . . . . 6 ((2↑𝑁) = if(∅ ∈ (𝐶𝑁), (2↑𝑁), 0) → ((2↑𝑁) ∥ (2↑𝑁) ↔ (2↑𝑁) ∥ if(∅ ∈ (𝐶𝑁), (2↑𝑁), 0)))
11 breq2 5062 . . . . . 6 (0 = if(∅ ∈ (𝐶𝑁), (2↑𝑁), 0) → ((2↑𝑁) ∥ 0 ↔ (2↑𝑁) ∥ if(∅ ∈ (𝐶𝑁), (2↑𝑁), 0)))
1210, 11ifboth 4504 . . . . 5 (((2↑𝑁) ∥ (2↑𝑁) ∧ (2↑𝑁) ∥ 0) → (2↑𝑁) ∥ if(∅ ∈ (𝐶𝑁), (2↑𝑁), 0))
137, 9, 12syl2anc 586 . . . 4 (𝜑 → (2↑𝑁) ∥ if(∅ ∈ (𝐶𝑁), (2↑𝑁), 0))
14 inss1 4204 . . . . . . . . 9 ((𝐴 sadd 𝐵) ∩ (0..^𝑁)) ⊆ (𝐴 sadd 𝐵)
15 sadval.a . . . . . . . . . . 11 (𝜑𝐴 ⊆ ℕ0)
16 sadval.b . . . . . . . . . . 11 (𝜑𝐵 ⊆ ℕ0)
17 sadval.c . . . . . . . . . . 11 𝐶 = seq0((𝑐 ∈ 2o, 𝑚 ∈ ℕ0 ↦ if(cadd(𝑚𝐴, 𝑚𝐵, ∅ ∈ 𝑐), 1o, ∅)), (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1))))
1815, 16, 17sadfval 15795 . . . . . . . . . 10 (𝜑 → (𝐴 sadd 𝐵) = {𝑘 ∈ ℕ0 ∣ hadd(𝑘𝐴, 𝑘𝐵, ∅ ∈ (𝐶𝑘))})
19 ssrab2 4055 . . . . . . . . . 10 {𝑘 ∈ ℕ0 ∣ hadd(𝑘𝐴, 𝑘𝐵, ∅ ∈ (𝐶𝑘))} ⊆ ℕ0
2018, 19eqsstrdi 4020 . . . . . . . . 9 (𝜑 → (𝐴 sadd 𝐵) ⊆ ℕ0)
2114, 20sstrid 3977 . . . . . . . 8 (𝜑 → ((𝐴 sadd 𝐵) ∩ (0..^𝑁)) ⊆ ℕ0)
22 fzofi 13336 . . . . . . . . . 10 (0..^𝑁) ∈ Fin
2322a1i 11 . . . . . . . . 9 (𝜑 → (0..^𝑁) ∈ Fin)
24 inss2 4205 . . . . . . . . 9 ((𝐴 sadd 𝐵) ∩ (0..^𝑁)) ⊆ (0..^𝑁)
25 ssfi 8732 . . . . . . . . 9 (((0..^𝑁) ∈ Fin ∧ ((𝐴 sadd 𝐵) ∩ (0..^𝑁)) ⊆ (0..^𝑁)) → ((𝐴 sadd 𝐵) ∩ (0..^𝑁)) ∈ Fin)
2623, 24, 25sylancl 588 . . . . . . . 8 (𝜑 → ((𝐴 sadd 𝐵) ∩ (0..^𝑁)) ∈ Fin)
27 elfpw 8820 . . . . . . . 8 (((𝐴 sadd 𝐵) ∩ (0..^𝑁)) ∈ (𝒫 ℕ0 ∩ Fin) ↔ (((𝐴 sadd 𝐵) ∩ (0..^𝑁)) ⊆ ℕ0 ∧ ((𝐴 sadd 𝐵) ∩ (0..^𝑁)) ∈ Fin))
2821, 26, 27sylanbrc 585 . . . . . . 7 (𝜑 → ((𝐴 sadd 𝐵) ∩ (0..^𝑁)) ∈ (𝒫 ℕ0 ∩ Fin))
29 bitsf1o 15788 . . . . . . . . . 10 (bits ↾ ℕ0):ℕ01-1-onto→(𝒫 ℕ0 ∩ Fin)
30 f1ocnv 6621 . . . . . . . . . 10 ((bits ↾ ℕ0):ℕ01-1-onto→(𝒫 ℕ0 ∩ Fin) → (bits ↾ ℕ0):(𝒫 ℕ0 ∩ Fin)–1-1-onto→ℕ0)
31 f1of 6609 . . . . . . . . . 10 ((bits ↾ ℕ0):(𝒫 ℕ0 ∩ Fin)–1-1-onto→ℕ0(bits ↾ ℕ0):(𝒫 ℕ0 ∩ Fin)⟶ℕ0)
3229, 30, 31mp2b 10 . . . . . . . . 9 (bits ↾ ℕ0):(𝒫 ℕ0 ∩ Fin)⟶ℕ0
33 sadcadd.k . . . . . . . . . 10 𝐾 = (bits ↾ ℕ0)
3433feq1i 6499 . . . . . . . . 9 (𝐾:(𝒫 ℕ0 ∩ Fin)⟶ℕ0(bits ↾ ℕ0):(𝒫 ℕ0 ∩ Fin)⟶ℕ0)
3532, 34mpbir 233 . . . . . . . 8 𝐾:(𝒫 ℕ0 ∩ Fin)⟶ℕ0
3635ffvelrni 6844 . . . . . . 7 (((𝐴 sadd 𝐵) ∩ (0..^𝑁)) ∈ (𝒫 ℕ0 ∩ Fin) → (𝐾‘((𝐴 sadd 𝐵) ∩ (0..^𝑁))) ∈ ℕ0)
3728, 36syl 17 . . . . . 6 (𝜑 → (𝐾‘((𝐴 sadd 𝐵) ∩ (0..^𝑁))) ∈ ℕ0)
3837nn0cnd 11951 . . . . 5 (𝜑 → (𝐾‘((𝐴 sadd 𝐵) ∩ (0..^𝑁))) ∈ ℂ)
394nncnd 11648 . . . . . 6 (𝜑 → (2↑𝑁) ∈ ℂ)
40 0cn 10627 . . . . . 6 0 ∈ ℂ
41 ifcl 4510 . . . . . 6 (((2↑𝑁) ∈ ℂ ∧ 0 ∈ ℂ) → if(∅ ∈ (𝐶𝑁), (2↑𝑁), 0) ∈ ℂ)
4239, 40, 41sylancl 588 . . . . 5 (𝜑 → if(∅ ∈ (𝐶𝑁), (2↑𝑁), 0) ∈ ℂ)
4338, 42pncan2d 10993 . . . 4 (𝜑 → (((𝐾‘((𝐴 sadd 𝐵) ∩ (0..^𝑁))) + if(∅ ∈ (𝐶𝑁), (2↑𝑁), 0)) − (𝐾‘((𝐴 sadd 𝐵) ∩ (0..^𝑁)))) = if(∅ ∈ (𝐶𝑁), (2↑𝑁), 0))
4413, 43breqtrrd 5086 . . 3 (𝜑 → (2↑𝑁) ∥ (((𝐾‘((𝐴 sadd 𝐵) ∩ (0..^𝑁))) + if(∅ ∈ (𝐶𝑁), (2↑𝑁), 0)) − (𝐾‘((𝐴 sadd 𝐵) ∩ (0..^𝑁)))))
4537nn0zd 12079 . . . . 5 (𝜑 → (𝐾‘((𝐴 sadd 𝐵) ∩ (0..^𝑁))) ∈ ℤ)
465adantr 483 . . . . . 6 ((𝜑 ∧ ∅ ∈ (𝐶𝑁)) → (2↑𝑁) ∈ ℤ)
47 0zd 11987 . . . . . 6 ((𝜑 ∧ ¬ ∅ ∈ (𝐶𝑁)) → 0 ∈ ℤ)
4846, 47ifclda 4500 . . . . 5 (𝜑 → if(∅ ∈ (𝐶𝑁), (2↑𝑁), 0) ∈ ℤ)
4945, 48zaddcld 12085 . . . 4 (𝜑 → ((𝐾‘((𝐴 sadd 𝐵) ∩ (0..^𝑁))) + if(∅ ∈ (𝐶𝑁), (2↑𝑁), 0)) ∈ ℤ)
50 moddvds 15612 . . . 4 (((2↑𝑁) ∈ ℕ ∧ ((𝐾‘((𝐴 sadd 𝐵) ∩ (0..^𝑁))) + if(∅ ∈ (𝐶𝑁), (2↑𝑁), 0)) ∈ ℤ ∧ (𝐾‘((𝐴 sadd 𝐵) ∩ (0..^𝑁))) ∈ ℤ) → ((((𝐾‘((𝐴 sadd 𝐵) ∩ (0..^𝑁))) + if(∅ ∈ (𝐶𝑁), (2↑𝑁), 0)) mod (2↑𝑁)) = ((𝐾‘((𝐴 sadd 𝐵) ∩ (0..^𝑁))) mod (2↑𝑁)) ↔ (2↑𝑁) ∥ (((𝐾‘((𝐴 sadd 𝐵) ∩ (0..^𝑁))) + if(∅ ∈ (𝐶𝑁), (2↑𝑁), 0)) − (𝐾‘((𝐴 sadd 𝐵) ∩ (0..^𝑁))))))
514, 49, 45, 50syl3anc 1367 . . 3 (𝜑 → ((((𝐾‘((𝐴 sadd 𝐵) ∩ (0..^𝑁))) + if(∅ ∈ (𝐶𝑁), (2↑𝑁), 0)) mod (2↑𝑁)) = ((𝐾‘((𝐴 sadd 𝐵) ∩ (0..^𝑁))) mod (2↑𝑁)) ↔ (2↑𝑁) ∥ (((𝐾‘((𝐴 sadd 𝐵) ∩ (0..^𝑁))) + if(∅ ∈ (𝐶𝑁), (2↑𝑁), 0)) − (𝐾‘((𝐴 sadd 𝐵) ∩ (0..^𝑁))))))
5244, 51mpbird 259 . 2 (𝜑 → (((𝐾‘((𝐴 sadd 𝐵) ∩ (0..^𝑁))) + if(∅ ∈ (𝐶𝑁), (2↑𝑁), 0)) mod (2↑𝑁)) = ((𝐾‘((𝐴 sadd 𝐵) ∩ (0..^𝑁))) mod (2↑𝑁)))
5315, 16, 17, 3, 33sadadd2 15803 . . 3 (𝜑 → ((𝐾‘((𝐴 sadd 𝐵) ∩ (0..^𝑁))) + if(∅ ∈ (𝐶𝑁), (2↑𝑁), 0)) = ((𝐾‘(𝐴 ∩ (0..^𝑁))) + (𝐾‘(𝐵 ∩ (0..^𝑁)))))
5453oveq1d 7165 . 2 (𝜑 → (((𝐾‘((𝐴 sadd 𝐵) ∩ (0..^𝑁))) + if(∅ ∈ (𝐶𝑁), (2↑𝑁), 0)) mod (2↑𝑁)) = (((𝐾‘(𝐴 ∩ (0..^𝑁))) + (𝐾‘(𝐵 ∩ (0..^𝑁)))) mod (2↑𝑁)))
5552, 54eqtr3d 2858 1 (𝜑 → ((𝐾‘((𝐴 sadd 𝐵) ∩ (0..^𝑁))) mod (2↑𝑁)) = (((𝐾‘(𝐴 ∩ (0..^𝑁))) + (𝐾‘(𝐵 ∩ (0..^𝑁)))) mod (2↑𝑁)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 208  wa 398   = wceq 1533  haddwhad 1589  caddwcad 1603  wcel 2110  {crab 3142  cin 3934  wss 3935  c0 4290  ifcif 4466  𝒫 cpw 4538   class class class wbr 5058  cmpt 5138  ccnv 5548  cres 5551  wf 6345  1-1-ontowf1o 6348  cfv 6349  (class class class)co 7150  cmpo 7152  1oc1o 8089  2oc2o 8090  Fincfn 8503  cc 10529  0cc0 10531  1c1 10532   + caddc 10534  cmin 10864  cn 11632  2c2 11686  0cn0 11891  cz 11975  ..^cfzo 13027   mod cmo 13231  seqcseq 13363  cexp 13423  cdvds 15601  bitscbits 15762   sadd csad 15763
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-rep 5182  ax-sep 5195  ax-nul 5202  ax-pow 5258  ax-pr 5321  ax-un 7455  ax-inf2 9098  ax-cnex 10587  ax-resscn 10588  ax-1cn 10589  ax-icn 10590  ax-addcl 10591  ax-addrcl 10592  ax-mulcl 10593  ax-mulrcl 10594  ax-mulcom 10595  ax-addass 10596  ax-mulass 10597  ax-distr 10598  ax-i2m1 10599  ax-1ne0 10600  ax-1rid 10601  ax-rnegex 10602  ax-rrecex 10603  ax-cnre 10604  ax-pre-lttri 10605  ax-pre-lttrn 10606  ax-pre-ltadd 10607  ax-pre-mulgt0 10608  ax-pre-sup 10609
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-xor 1501  df-tru 1536  df-fal 1546  df-had 1590  df-cad 1604  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-pss 3953  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4561  df-pr 4563  df-tp 4565  df-op 4567  df-uni 4832  df-int 4869  df-iun 4913  df-disj 5024  df-br 5059  df-opab 5121  df-mpt 5139  df-tr 5165  df-id 5454  df-eprel 5459  df-po 5468  df-so 5469  df-fr 5508  df-se 5509  df-we 5510  df-xp 5555  df-rel 5556  df-cnv 5557  df-co 5558  df-dm 5559  df-rn 5560  df-res 5561  df-ima 5562  df-pred 6142  df-ord 6188  df-on 6189  df-lim 6190  df-suc 6191  df-iota 6308  df-fun 6351  df-fn 6352  df-f 6353  df-f1 6354  df-fo 6355  df-f1o 6356  df-fv 6357  df-isom 6358  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-om 7575  df-1st 7683  df-2nd 7684  df-wrecs 7941  df-recs 8002  df-rdg 8040  df-1o 8096  df-2o 8097  df-oadd 8100  df-er 8283  df-map 8402  df-pm 8403  df-en 8504  df-dom 8505  df-sdom 8506  df-fin 8507  df-sup 8900  df-inf 8901  df-oi 8968  df-dju 9324  df-card 9362  df-pnf 10671  df-mnf 10672  df-xr 10673  df-ltxr 10674  df-le 10675  df-sub 10866  df-neg 10867  df-div 11292  df-nn 11633  df-2 11694  df-3 11695  df-n0 11892  df-xnn0 11962  df-z 11976  df-uz 12238  df-rp 12384  df-fz 12887  df-fzo 13028  df-fl 13156  df-mod 13232  df-seq 13364  df-exp 13424  df-hash 13685  df-cj 14452  df-re 14453  df-im 14454  df-sqrt 14588  df-abs 14589  df-clim 14839  df-sum 15037  df-dvds 15602  df-bits 15765  df-sad 15794
This theorem is referenced by:  sadaddlem  15809  sadasslem  15813  sadeq  15815
  Copyright terms: Public domain W3C validator