MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sadaddlem Structured version   Visualization version   GIF version

Theorem sadaddlem 15112
Description: Lemma for sadadd 15113. (Contributed by Mario Carneiro, 9-Sep-2016.)
Hypotheses
Ref Expression
sadaddlem.c 𝐶 = seq0((𝑐 ∈ 2𝑜, 𝑚 ∈ ℕ0 ↦ if(cadd(𝑚 ∈ (bits‘𝐴), 𝑚 ∈ (bits‘𝐵), ∅ ∈ 𝑐), 1𝑜, ∅)), (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1))))
sadaddlem.k 𝐾 = (bits ↾ ℕ0)
sadaddlem.1 (𝜑𝐴 ∈ ℤ)
sadaddlem.2 (𝜑𝐵 ∈ ℤ)
sadaddlem.3 (𝜑𝑁 ∈ ℕ0)
Assertion
Ref Expression
sadaddlem (𝜑 → (((bits‘𝐴) sadd (bits‘𝐵)) ∩ (0..^𝑁)) = (bits‘((𝐴 + 𝐵) mod (2↑𝑁))))
Distinct variable groups:   𝑚,𝑐,𝑛   𝐴,𝑐,𝑚   𝐵,𝑐,𝑚   𝑛,𝑁
Allowed substitution hints:   𝜑(𝑚,𝑛,𝑐)   𝐴(𝑛)   𝐵(𝑛)   𝐶(𝑚,𝑛,𝑐)   𝐾(𝑚,𝑛,𝑐)   𝑁(𝑚,𝑐)

Proof of Theorem sadaddlem
StepHypRef Expression
1 sadaddlem.k . . . . . . . . . . . . 13 𝐾 = (bits ↾ ℕ0)
21fveq1i 6149 . . . . . . . . . . . 12 (𝐾‘((bits‘𝐴) ∩ (0..^𝑁))) = ((bits ↾ ℕ0)‘((bits‘𝐴) ∩ (0..^𝑁)))
3 sadaddlem.1 . . . . . . . . . . . . . . . 16 (𝜑𝐴 ∈ ℤ)
4 2nn 11129 . . . . . . . . . . . . . . . . . 18 2 ∈ ℕ
54a1i 11 . . . . . . . . . . . . . . . . 17 (𝜑 → 2 ∈ ℕ)
6 sadaddlem.3 . . . . . . . . . . . . . . . . 17 (𝜑𝑁 ∈ ℕ0)
75, 6nnexpcld 12970 . . . . . . . . . . . . . . . 16 (𝜑 → (2↑𝑁) ∈ ℕ)
83, 7zmodcld 12631 . . . . . . . . . . . . . . 15 (𝜑 → (𝐴 mod (2↑𝑁)) ∈ ℕ0)
9 fvres 6164 . . . . . . . . . . . . . . 15 ((𝐴 mod (2↑𝑁)) ∈ ℕ0 → ((bits ↾ ℕ0)‘(𝐴 mod (2↑𝑁))) = (bits‘(𝐴 mod (2↑𝑁))))
108, 9syl 17 . . . . . . . . . . . . . 14 (𝜑 → ((bits ↾ ℕ0)‘(𝐴 mod (2↑𝑁))) = (bits‘(𝐴 mod (2↑𝑁))))
11 bitsmod 15082 . . . . . . . . . . . . . . 15 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → (bits‘(𝐴 mod (2↑𝑁))) = ((bits‘𝐴) ∩ (0..^𝑁)))
123, 6, 11syl2anc 692 . . . . . . . . . . . . . 14 (𝜑 → (bits‘(𝐴 mod (2↑𝑁))) = ((bits‘𝐴) ∩ (0..^𝑁)))
1310, 12eqtrd 2655 . . . . . . . . . . . . 13 (𝜑 → ((bits ↾ ℕ0)‘(𝐴 mod (2↑𝑁))) = ((bits‘𝐴) ∩ (0..^𝑁)))
14 bitsf1o 15091 . . . . . . . . . . . . . 14 (bits ↾ ℕ0):ℕ01-1-onto→(𝒫 ℕ0 ∩ Fin)
15 f1ocnvfv 6488 . . . . . . . . . . . . . 14 (((bits ↾ ℕ0):ℕ01-1-onto→(𝒫 ℕ0 ∩ Fin) ∧ (𝐴 mod (2↑𝑁)) ∈ ℕ0) → (((bits ↾ ℕ0)‘(𝐴 mod (2↑𝑁))) = ((bits‘𝐴) ∩ (0..^𝑁)) → ((bits ↾ ℕ0)‘((bits‘𝐴) ∩ (0..^𝑁))) = (𝐴 mod (2↑𝑁))))
1614, 8, 15sylancr 694 . . . . . . . . . . . . 13 (𝜑 → (((bits ↾ ℕ0)‘(𝐴 mod (2↑𝑁))) = ((bits‘𝐴) ∩ (0..^𝑁)) → ((bits ↾ ℕ0)‘((bits‘𝐴) ∩ (0..^𝑁))) = (𝐴 mod (2↑𝑁))))
1713, 16mpd 15 . . . . . . . . . . . 12 (𝜑 → ((bits ↾ ℕ0)‘((bits‘𝐴) ∩ (0..^𝑁))) = (𝐴 mod (2↑𝑁)))
182, 17syl5eq 2667 . . . . . . . . . . 11 (𝜑 → (𝐾‘((bits‘𝐴) ∩ (0..^𝑁))) = (𝐴 mod (2↑𝑁)))
1918oveq2d 6620 . . . . . . . . . 10 (𝜑 → (𝐴 − (𝐾‘((bits‘𝐴) ∩ (0..^𝑁)))) = (𝐴 − (𝐴 mod (2↑𝑁))))
2019oveq1d 6619 . . . . . . . . 9 (𝜑 → ((𝐴 − (𝐾‘((bits‘𝐴) ∩ (0..^𝑁)))) / (2↑𝑁)) = ((𝐴 − (𝐴 mod (2↑𝑁))) / (2↑𝑁)))
213zred 11426 . . . . . . . . . 10 (𝜑𝐴 ∈ ℝ)
227nnrpd 11814 . . . . . . . . . 10 (𝜑 → (2↑𝑁) ∈ ℝ+)
23 moddifz 12622 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ (2↑𝑁) ∈ ℝ+) → ((𝐴 − (𝐴 mod (2↑𝑁))) / (2↑𝑁)) ∈ ℤ)
2421, 22, 23syl2anc 692 . . . . . . . . 9 (𝜑 → ((𝐴 − (𝐴 mod (2↑𝑁))) / (2↑𝑁)) ∈ ℤ)
2520, 24eqeltrd 2698 . . . . . . . 8 (𝜑 → ((𝐴 − (𝐾‘((bits‘𝐴) ∩ (0..^𝑁)))) / (2↑𝑁)) ∈ ℤ)
267nnzd 11425 . . . . . . . . 9 (𝜑 → (2↑𝑁) ∈ ℤ)
277nnne0d 11009 . . . . . . . . 9 (𝜑 → (2↑𝑁) ≠ 0)
28 inss1 3811 . . . . . . . . . . . . . 14 ((bits‘𝐴) ∩ (0..^𝑁)) ⊆ (bits‘𝐴)
29 bitsss 15072 . . . . . . . . . . . . . 14 (bits‘𝐴) ⊆ ℕ0
3028, 29sstri 3592 . . . . . . . . . . . . 13 ((bits‘𝐴) ∩ (0..^𝑁)) ⊆ ℕ0
31 fzofi 12713 . . . . . . . . . . . . . 14 (0..^𝑁) ∈ Fin
32 inss2 3812 . . . . . . . . . . . . . 14 ((bits‘𝐴) ∩ (0..^𝑁)) ⊆ (0..^𝑁)
33 ssfi 8124 . . . . . . . . . . . . . 14 (((0..^𝑁) ∈ Fin ∧ ((bits‘𝐴) ∩ (0..^𝑁)) ⊆ (0..^𝑁)) → ((bits‘𝐴) ∩ (0..^𝑁)) ∈ Fin)
3431, 32, 33mp2an 707 . . . . . . . . . . . . 13 ((bits‘𝐴) ∩ (0..^𝑁)) ∈ Fin
35 elfpw 8212 . . . . . . . . . . . . 13 (((bits‘𝐴) ∩ (0..^𝑁)) ∈ (𝒫 ℕ0 ∩ Fin) ↔ (((bits‘𝐴) ∩ (0..^𝑁)) ⊆ ℕ0 ∧ ((bits‘𝐴) ∩ (0..^𝑁)) ∈ Fin))
3630, 34, 35mpbir2an 954 . . . . . . . . . . . 12 ((bits‘𝐴) ∩ (0..^𝑁)) ∈ (𝒫 ℕ0 ∩ Fin)
37 f1ocnv 6106 . . . . . . . . . . . . . . 15 ((bits ↾ ℕ0):ℕ01-1-onto→(𝒫 ℕ0 ∩ Fin) → (bits ↾ ℕ0):(𝒫 ℕ0 ∩ Fin)–1-1-onto→ℕ0)
38 f1of 6094 . . . . . . . . . . . . . . 15 ((bits ↾ ℕ0):(𝒫 ℕ0 ∩ Fin)–1-1-onto→ℕ0(bits ↾ ℕ0):(𝒫 ℕ0 ∩ Fin)⟶ℕ0)
3914, 37, 38mp2b 10 . . . . . . . . . . . . . 14 (bits ↾ ℕ0):(𝒫 ℕ0 ∩ Fin)⟶ℕ0
401feq1i 5993 . . . . . . . . . . . . . 14 (𝐾:(𝒫 ℕ0 ∩ Fin)⟶ℕ0(bits ↾ ℕ0):(𝒫 ℕ0 ∩ Fin)⟶ℕ0)
4139, 40mpbir 221 . . . . . . . . . . . . 13 𝐾:(𝒫 ℕ0 ∩ Fin)⟶ℕ0
4241ffvelrni 6314 . . . . . . . . . . . 12 (((bits‘𝐴) ∩ (0..^𝑁)) ∈ (𝒫 ℕ0 ∩ Fin) → (𝐾‘((bits‘𝐴) ∩ (0..^𝑁))) ∈ ℕ0)
4336, 42mp1i 13 . . . . . . . . . . 11 (𝜑 → (𝐾‘((bits‘𝐴) ∩ (0..^𝑁))) ∈ ℕ0)
4443nn0zd 11424 . . . . . . . . . 10 (𝜑 → (𝐾‘((bits‘𝐴) ∩ (0..^𝑁))) ∈ ℤ)
453, 44zsubcld 11431 . . . . . . . . 9 (𝜑 → (𝐴 − (𝐾‘((bits‘𝐴) ∩ (0..^𝑁)))) ∈ ℤ)
46 dvdsval2 14910 . . . . . . . . 9 (((2↑𝑁) ∈ ℤ ∧ (2↑𝑁) ≠ 0 ∧ (𝐴 − (𝐾‘((bits‘𝐴) ∩ (0..^𝑁)))) ∈ ℤ) → ((2↑𝑁) ∥ (𝐴 − (𝐾‘((bits‘𝐴) ∩ (0..^𝑁)))) ↔ ((𝐴 − (𝐾‘((bits‘𝐴) ∩ (0..^𝑁)))) / (2↑𝑁)) ∈ ℤ))
4726, 27, 45, 46syl3anc 1323 . . . . . . . 8 (𝜑 → ((2↑𝑁) ∥ (𝐴 − (𝐾‘((bits‘𝐴) ∩ (0..^𝑁)))) ↔ ((𝐴 − (𝐾‘((bits‘𝐴) ∩ (0..^𝑁)))) / (2↑𝑁)) ∈ ℤ))
4825, 47mpbird 247 . . . . . . 7 (𝜑 → (2↑𝑁) ∥ (𝐴 − (𝐾‘((bits‘𝐴) ∩ (0..^𝑁)))))
491fveq1i 6149 . . . . . . . . . . . 12 (𝐾‘((bits‘𝐵) ∩ (0..^𝑁))) = ((bits ↾ ℕ0)‘((bits‘𝐵) ∩ (0..^𝑁)))
50 sadaddlem.2 . . . . . . . . . . . . . . . 16 (𝜑𝐵 ∈ ℤ)
5150, 7zmodcld 12631 . . . . . . . . . . . . . . 15 (𝜑 → (𝐵 mod (2↑𝑁)) ∈ ℕ0)
52 fvres 6164 . . . . . . . . . . . . . . 15 ((𝐵 mod (2↑𝑁)) ∈ ℕ0 → ((bits ↾ ℕ0)‘(𝐵 mod (2↑𝑁))) = (bits‘(𝐵 mod (2↑𝑁))))
5351, 52syl 17 . . . . . . . . . . . . . 14 (𝜑 → ((bits ↾ ℕ0)‘(𝐵 mod (2↑𝑁))) = (bits‘(𝐵 mod (2↑𝑁))))
54 bitsmod 15082 . . . . . . . . . . . . . . 15 ((𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → (bits‘(𝐵 mod (2↑𝑁))) = ((bits‘𝐵) ∩ (0..^𝑁)))
5550, 6, 54syl2anc 692 . . . . . . . . . . . . . 14 (𝜑 → (bits‘(𝐵 mod (2↑𝑁))) = ((bits‘𝐵) ∩ (0..^𝑁)))
5653, 55eqtrd 2655 . . . . . . . . . . . . 13 (𝜑 → ((bits ↾ ℕ0)‘(𝐵 mod (2↑𝑁))) = ((bits‘𝐵) ∩ (0..^𝑁)))
57 f1ocnvfv 6488 . . . . . . . . . . . . . 14 (((bits ↾ ℕ0):ℕ01-1-onto→(𝒫 ℕ0 ∩ Fin) ∧ (𝐵 mod (2↑𝑁)) ∈ ℕ0) → (((bits ↾ ℕ0)‘(𝐵 mod (2↑𝑁))) = ((bits‘𝐵) ∩ (0..^𝑁)) → ((bits ↾ ℕ0)‘((bits‘𝐵) ∩ (0..^𝑁))) = (𝐵 mod (2↑𝑁))))
5814, 51, 57sylancr 694 . . . . . . . . . . . . 13 (𝜑 → (((bits ↾ ℕ0)‘(𝐵 mod (2↑𝑁))) = ((bits‘𝐵) ∩ (0..^𝑁)) → ((bits ↾ ℕ0)‘((bits‘𝐵) ∩ (0..^𝑁))) = (𝐵 mod (2↑𝑁))))
5956, 58mpd 15 . . . . . . . . . . . 12 (𝜑 → ((bits ↾ ℕ0)‘((bits‘𝐵) ∩ (0..^𝑁))) = (𝐵 mod (2↑𝑁)))
6049, 59syl5eq 2667 . . . . . . . . . . 11 (𝜑 → (𝐾‘((bits‘𝐵) ∩ (0..^𝑁))) = (𝐵 mod (2↑𝑁)))
6160oveq2d 6620 . . . . . . . . . 10 (𝜑 → (𝐵 − (𝐾‘((bits‘𝐵) ∩ (0..^𝑁)))) = (𝐵 − (𝐵 mod (2↑𝑁))))
6261oveq1d 6619 . . . . . . . . 9 (𝜑 → ((𝐵 − (𝐾‘((bits‘𝐵) ∩ (0..^𝑁)))) / (2↑𝑁)) = ((𝐵 − (𝐵 mod (2↑𝑁))) / (2↑𝑁)))
6350zred 11426 . . . . . . . . . 10 (𝜑𝐵 ∈ ℝ)
64 moddifz 12622 . . . . . . . . . 10 ((𝐵 ∈ ℝ ∧ (2↑𝑁) ∈ ℝ+) → ((𝐵 − (𝐵 mod (2↑𝑁))) / (2↑𝑁)) ∈ ℤ)
6563, 22, 64syl2anc 692 . . . . . . . . 9 (𝜑 → ((𝐵 − (𝐵 mod (2↑𝑁))) / (2↑𝑁)) ∈ ℤ)
6662, 65eqeltrd 2698 . . . . . . . 8 (𝜑 → ((𝐵 − (𝐾‘((bits‘𝐵) ∩ (0..^𝑁)))) / (2↑𝑁)) ∈ ℤ)
67 inss1 3811 . . . . . . . . . . . . . 14 ((bits‘𝐵) ∩ (0..^𝑁)) ⊆ (bits‘𝐵)
68 bitsss 15072 . . . . . . . . . . . . . 14 (bits‘𝐵) ⊆ ℕ0
6967, 68sstri 3592 . . . . . . . . . . . . 13 ((bits‘𝐵) ∩ (0..^𝑁)) ⊆ ℕ0
70 inss2 3812 . . . . . . . . . . . . . 14 ((bits‘𝐵) ∩ (0..^𝑁)) ⊆ (0..^𝑁)
71 ssfi 8124 . . . . . . . . . . . . . 14 (((0..^𝑁) ∈ Fin ∧ ((bits‘𝐵) ∩ (0..^𝑁)) ⊆ (0..^𝑁)) → ((bits‘𝐵) ∩ (0..^𝑁)) ∈ Fin)
7231, 70, 71mp2an 707 . . . . . . . . . . . . 13 ((bits‘𝐵) ∩ (0..^𝑁)) ∈ Fin
73 elfpw 8212 . . . . . . . . . . . . 13 (((bits‘𝐵) ∩ (0..^𝑁)) ∈ (𝒫 ℕ0 ∩ Fin) ↔ (((bits‘𝐵) ∩ (0..^𝑁)) ⊆ ℕ0 ∧ ((bits‘𝐵) ∩ (0..^𝑁)) ∈ Fin))
7469, 72, 73mpbir2an 954 . . . . . . . . . . . 12 ((bits‘𝐵) ∩ (0..^𝑁)) ∈ (𝒫 ℕ0 ∩ Fin)
7541ffvelrni 6314 . . . . . . . . . . . 12 (((bits‘𝐵) ∩ (0..^𝑁)) ∈ (𝒫 ℕ0 ∩ Fin) → (𝐾‘((bits‘𝐵) ∩ (0..^𝑁))) ∈ ℕ0)
7674, 75mp1i 13 . . . . . . . . . . 11 (𝜑 → (𝐾‘((bits‘𝐵) ∩ (0..^𝑁))) ∈ ℕ0)
7776nn0zd 11424 . . . . . . . . . 10 (𝜑 → (𝐾‘((bits‘𝐵) ∩ (0..^𝑁))) ∈ ℤ)
7850, 77zsubcld 11431 . . . . . . . . 9 (𝜑 → (𝐵 − (𝐾‘((bits‘𝐵) ∩ (0..^𝑁)))) ∈ ℤ)
79 dvdsval2 14910 . . . . . . . . 9 (((2↑𝑁) ∈ ℤ ∧ (2↑𝑁) ≠ 0 ∧ (𝐵 − (𝐾‘((bits‘𝐵) ∩ (0..^𝑁)))) ∈ ℤ) → ((2↑𝑁) ∥ (𝐵 − (𝐾‘((bits‘𝐵) ∩ (0..^𝑁)))) ↔ ((𝐵 − (𝐾‘((bits‘𝐵) ∩ (0..^𝑁)))) / (2↑𝑁)) ∈ ℤ))
8026, 27, 78, 79syl3anc 1323 . . . . . . . 8 (𝜑 → ((2↑𝑁) ∥ (𝐵 − (𝐾‘((bits‘𝐵) ∩ (0..^𝑁)))) ↔ ((𝐵 − (𝐾‘((bits‘𝐵) ∩ (0..^𝑁)))) / (2↑𝑁)) ∈ ℤ))
8166, 80mpbird 247 . . . . . . 7 (𝜑 → (2↑𝑁) ∥ (𝐵 − (𝐾‘((bits‘𝐵) ∩ (0..^𝑁)))))
82 dvds2add 14939 . . . . . . . 8 (((2↑𝑁) ∈ ℤ ∧ (𝐴 − (𝐾‘((bits‘𝐴) ∩ (0..^𝑁)))) ∈ ℤ ∧ (𝐵 − (𝐾‘((bits‘𝐵) ∩ (0..^𝑁)))) ∈ ℤ) → (((2↑𝑁) ∥ (𝐴 − (𝐾‘((bits‘𝐴) ∩ (0..^𝑁)))) ∧ (2↑𝑁) ∥ (𝐵 − (𝐾‘((bits‘𝐵) ∩ (0..^𝑁))))) → (2↑𝑁) ∥ ((𝐴 − (𝐾‘((bits‘𝐴) ∩ (0..^𝑁)))) + (𝐵 − (𝐾‘((bits‘𝐵) ∩ (0..^𝑁)))))))
8326, 45, 78, 82syl3anc 1323 . . . . . . 7 (𝜑 → (((2↑𝑁) ∥ (𝐴 − (𝐾‘((bits‘𝐴) ∩ (0..^𝑁)))) ∧ (2↑𝑁) ∥ (𝐵 − (𝐾‘((bits‘𝐵) ∩ (0..^𝑁))))) → (2↑𝑁) ∥ ((𝐴 − (𝐾‘((bits‘𝐴) ∩ (0..^𝑁)))) + (𝐵 − (𝐾‘((bits‘𝐵) ∩ (0..^𝑁)))))))
8448, 81, 83mp2and 714 . . . . . 6 (𝜑 → (2↑𝑁) ∥ ((𝐴 − (𝐾‘((bits‘𝐴) ∩ (0..^𝑁)))) + (𝐵 − (𝐾‘((bits‘𝐵) ∩ (0..^𝑁))))))
853zcnd 11427 . . . . . . 7 (𝜑𝐴 ∈ ℂ)
8650zcnd 11427 . . . . . . 7 (𝜑𝐵 ∈ ℂ)
8743nn0cnd 11297 . . . . . . 7 (𝜑 → (𝐾‘((bits‘𝐴) ∩ (0..^𝑁))) ∈ ℂ)
8876nn0cnd 11297 . . . . . . 7 (𝜑 → (𝐾‘((bits‘𝐵) ∩ (0..^𝑁))) ∈ ℂ)
8985, 86, 87, 88addsub4d 10383 . . . . . 6 (𝜑 → ((𝐴 + 𝐵) − ((𝐾‘((bits‘𝐴) ∩ (0..^𝑁))) + (𝐾‘((bits‘𝐵) ∩ (0..^𝑁))))) = ((𝐴 − (𝐾‘((bits‘𝐴) ∩ (0..^𝑁)))) + (𝐵 − (𝐾‘((bits‘𝐵) ∩ (0..^𝑁))))))
9084, 89breqtrrd 4641 . . . . 5 (𝜑 → (2↑𝑁) ∥ ((𝐴 + 𝐵) − ((𝐾‘((bits‘𝐴) ∩ (0..^𝑁))) + (𝐾‘((bits‘𝐵) ∩ (0..^𝑁))))))
913, 50zaddcld 11430 . . . . . 6 (𝜑 → (𝐴 + 𝐵) ∈ ℤ)
9244, 77zaddcld 11430 . . . . . 6 (𝜑 → ((𝐾‘((bits‘𝐴) ∩ (0..^𝑁))) + (𝐾‘((bits‘𝐵) ∩ (0..^𝑁)))) ∈ ℤ)
93 moddvds 14915 . . . . . 6 (((2↑𝑁) ∈ ℕ ∧ (𝐴 + 𝐵) ∈ ℤ ∧ ((𝐾‘((bits‘𝐴) ∩ (0..^𝑁))) + (𝐾‘((bits‘𝐵) ∩ (0..^𝑁)))) ∈ ℤ) → (((𝐴 + 𝐵) mod (2↑𝑁)) = (((𝐾‘((bits‘𝐴) ∩ (0..^𝑁))) + (𝐾‘((bits‘𝐵) ∩ (0..^𝑁)))) mod (2↑𝑁)) ↔ (2↑𝑁) ∥ ((𝐴 + 𝐵) − ((𝐾‘((bits‘𝐴) ∩ (0..^𝑁))) + (𝐾‘((bits‘𝐵) ∩ (0..^𝑁)))))))
947, 91, 92, 93syl3anc 1323 . . . . 5 (𝜑 → (((𝐴 + 𝐵) mod (2↑𝑁)) = (((𝐾‘((bits‘𝐴) ∩ (0..^𝑁))) + (𝐾‘((bits‘𝐵) ∩ (0..^𝑁)))) mod (2↑𝑁)) ↔ (2↑𝑁) ∥ ((𝐴 + 𝐵) − ((𝐾‘((bits‘𝐴) ∩ (0..^𝑁))) + (𝐾‘((bits‘𝐵) ∩ (0..^𝑁)))))))
9590, 94mpbird 247 . . . 4 (𝜑 → ((𝐴 + 𝐵) mod (2↑𝑁)) = (((𝐾‘((bits‘𝐴) ∩ (0..^𝑁))) + (𝐾‘((bits‘𝐵) ∩ (0..^𝑁)))) mod (2↑𝑁)))
9629a1i 11 . . . . 5 (𝜑 → (bits‘𝐴) ⊆ ℕ0)
9768a1i 11 . . . . 5 (𝜑 → (bits‘𝐵) ⊆ ℕ0)
98 sadaddlem.c . . . . 5 𝐶 = seq0((𝑐 ∈ 2𝑜, 𝑚 ∈ ℕ0 ↦ if(cadd(𝑚 ∈ (bits‘𝐴), 𝑚 ∈ (bits‘𝐵), ∅ ∈ 𝑐), 1𝑜, ∅)), (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1))))
9996, 97, 98, 6, 1sadadd3 15107 . . . 4 (𝜑 → ((𝐾‘(((bits‘𝐴) sadd (bits‘𝐵)) ∩ (0..^𝑁))) mod (2↑𝑁)) = (((𝐾‘((bits‘𝐴) ∩ (0..^𝑁))) + (𝐾‘((bits‘𝐵) ∩ (0..^𝑁)))) mod (2↑𝑁)))
100 inss1 3811 . . . . . . . . 9 (((bits‘𝐴) sadd (bits‘𝐵)) ∩ (0..^𝑁)) ⊆ ((bits‘𝐴) sadd (bits‘𝐵))
101 sadcl 15108 . . . . . . . . . 10 (((bits‘𝐴) ⊆ ℕ0 ∧ (bits‘𝐵) ⊆ ℕ0) → ((bits‘𝐴) sadd (bits‘𝐵)) ⊆ ℕ0)
10229, 68, 101mp2an 707 . . . . . . . . 9 ((bits‘𝐴) sadd (bits‘𝐵)) ⊆ ℕ0
103100, 102sstri 3592 . . . . . . . 8 (((bits‘𝐴) sadd (bits‘𝐵)) ∩ (0..^𝑁)) ⊆ ℕ0
104 inss2 3812 . . . . . . . . 9 (((bits‘𝐴) sadd (bits‘𝐵)) ∩ (0..^𝑁)) ⊆ (0..^𝑁)
105 ssfi 8124 . . . . . . . . 9 (((0..^𝑁) ∈ Fin ∧ (((bits‘𝐴) sadd (bits‘𝐵)) ∩ (0..^𝑁)) ⊆ (0..^𝑁)) → (((bits‘𝐴) sadd (bits‘𝐵)) ∩ (0..^𝑁)) ∈ Fin)
10631, 104, 105mp2an 707 . . . . . . . 8 (((bits‘𝐴) sadd (bits‘𝐵)) ∩ (0..^𝑁)) ∈ Fin
107 elfpw 8212 . . . . . . . 8 ((((bits‘𝐴) sadd (bits‘𝐵)) ∩ (0..^𝑁)) ∈ (𝒫 ℕ0 ∩ Fin) ↔ ((((bits‘𝐴) sadd (bits‘𝐵)) ∩ (0..^𝑁)) ⊆ ℕ0 ∧ (((bits‘𝐴) sadd (bits‘𝐵)) ∩ (0..^𝑁)) ∈ Fin))
108103, 106, 107mpbir2an 954 . . . . . . 7 (((bits‘𝐴) sadd (bits‘𝐵)) ∩ (0..^𝑁)) ∈ (𝒫 ℕ0 ∩ Fin)
10941ffvelrni 6314 . . . . . . 7 ((((bits‘𝐴) sadd (bits‘𝐵)) ∩ (0..^𝑁)) ∈ (𝒫 ℕ0 ∩ Fin) → (𝐾‘(((bits‘𝐴) sadd (bits‘𝐵)) ∩ (0..^𝑁))) ∈ ℕ0)
110108, 109mp1i 13 . . . . . 6 (𝜑 → (𝐾‘(((bits‘𝐴) sadd (bits‘𝐵)) ∩ (0..^𝑁))) ∈ ℕ0)
111110nn0red 11296 . . . . 5 (𝜑 → (𝐾‘(((bits‘𝐴) sadd (bits‘𝐵)) ∩ (0..^𝑁))) ∈ ℝ)
112110nn0ge0d 11298 . . . . 5 (𝜑 → 0 ≤ (𝐾‘(((bits‘𝐴) sadd (bits‘𝐵)) ∩ (0..^𝑁))))
1131fveq1i 6149 . . . . . . . . . 10 (𝐾‘(((bits‘𝐴) sadd (bits‘𝐵)) ∩ (0..^𝑁))) = ((bits ↾ ℕ0)‘(((bits‘𝐴) sadd (bits‘𝐵)) ∩ (0..^𝑁)))
114113fveq2i 6151 . . . . . . . . 9 ((bits ↾ ℕ0)‘(𝐾‘(((bits‘𝐴) sadd (bits‘𝐵)) ∩ (0..^𝑁)))) = ((bits ↾ ℕ0)‘((bits ↾ ℕ0)‘(((bits‘𝐴) sadd (bits‘𝐵)) ∩ (0..^𝑁))))
115 fvres 6164 . . . . . . . . . 10 ((𝐾‘(((bits‘𝐴) sadd (bits‘𝐵)) ∩ (0..^𝑁))) ∈ ℕ0 → ((bits ↾ ℕ0)‘(𝐾‘(((bits‘𝐴) sadd (bits‘𝐵)) ∩ (0..^𝑁)))) = (bits‘(𝐾‘(((bits‘𝐴) sadd (bits‘𝐵)) ∩ (0..^𝑁)))))
116110, 115syl 17 . . . . . . . . 9 (𝜑 → ((bits ↾ ℕ0)‘(𝐾‘(((bits‘𝐴) sadd (bits‘𝐵)) ∩ (0..^𝑁)))) = (bits‘(𝐾‘(((bits‘𝐴) sadd (bits‘𝐵)) ∩ (0..^𝑁)))))
117108a1i 11 . . . . . . . . . 10 (𝜑 → (((bits‘𝐴) sadd (bits‘𝐵)) ∩ (0..^𝑁)) ∈ (𝒫 ℕ0 ∩ Fin))
118 f1ocnvfv2 6487 . . . . . . . . . 10 (((bits ↾ ℕ0):ℕ01-1-onto→(𝒫 ℕ0 ∩ Fin) ∧ (((bits‘𝐴) sadd (bits‘𝐵)) ∩ (0..^𝑁)) ∈ (𝒫 ℕ0 ∩ Fin)) → ((bits ↾ ℕ0)‘((bits ↾ ℕ0)‘(((bits‘𝐴) sadd (bits‘𝐵)) ∩ (0..^𝑁)))) = (((bits‘𝐴) sadd (bits‘𝐵)) ∩ (0..^𝑁)))
11914, 117, 118sylancr 694 . . . . . . . . 9 (𝜑 → ((bits ↾ ℕ0)‘((bits ↾ ℕ0)‘(((bits‘𝐴) sadd (bits‘𝐵)) ∩ (0..^𝑁)))) = (((bits‘𝐴) sadd (bits‘𝐵)) ∩ (0..^𝑁)))
120114, 116, 1193eqtr3a 2679 . . . . . . . 8 (𝜑 → (bits‘(𝐾‘(((bits‘𝐴) sadd (bits‘𝐵)) ∩ (0..^𝑁)))) = (((bits‘𝐴) sadd (bits‘𝐵)) ∩ (0..^𝑁)))
121120, 104syl6eqss 3634 . . . . . . 7 (𝜑 → (bits‘(𝐾‘(((bits‘𝐴) sadd (bits‘𝐵)) ∩ (0..^𝑁)))) ⊆ (0..^𝑁))
122110nn0zd 11424 . . . . . . . 8 (𝜑 → (𝐾‘(((bits‘𝐴) sadd (bits‘𝐵)) ∩ (0..^𝑁))) ∈ ℤ)
123 bitsfzo 15081 . . . . . . . 8 (((𝐾‘(((bits‘𝐴) sadd (bits‘𝐵)) ∩ (0..^𝑁))) ∈ ℤ ∧ 𝑁 ∈ ℕ0) → ((𝐾‘(((bits‘𝐴) sadd (bits‘𝐵)) ∩ (0..^𝑁))) ∈ (0..^(2↑𝑁)) ↔ (bits‘(𝐾‘(((bits‘𝐴) sadd (bits‘𝐵)) ∩ (0..^𝑁)))) ⊆ (0..^𝑁)))
124122, 6, 123syl2anc 692 . . . . . . 7 (𝜑 → ((𝐾‘(((bits‘𝐴) sadd (bits‘𝐵)) ∩ (0..^𝑁))) ∈ (0..^(2↑𝑁)) ↔ (bits‘(𝐾‘(((bits‘𝐴) sadd (bits‘𝐵)) ∩ (0..^𝑁)))) ⊆ (0..^𝑁)))
125121, 124mpbird 247 . . . . . 6 (𝜑 → (𝐾‘(((bits‘𝐴) sadd (bits‘𝐵)) ∩ (0..^𝑁))) ∈ (0..^(2↑𝑁)))
126 elfzolt2 12420 . . . . . 6 ((𝐾‘(((bits‘𝐴) sadd (bits‘𝐵)) ∩ (0..^𝑁))) ∈ (0..^(2↑𝑁)) → (𝐾‘(((bits‘𝐴) sadd (bits‘𝐵)) ∩ (0..^𝑁))) < (2↑𝑁))
127125, 126syl 17 . . . . 5 (𝜑 → (𝐾‘(((bits‘𝐴) sadd (bits‘𝐵)) ∩ (0..^𝑁))) < (2↑𝑁))
128 modid 12635 . . . . 5 ((((𝐾‘(((bits‘𝐴) sadd (bits‘𝐵)) ∩ (0..^𝑁))) ∈ ℝ ∧ (2↑𝑁) ∈ ℝ+) ∧ (0 ≤ (𝐾‘(((bits‘𝐴) sadd (bits‘𝐵)) ∩ (0..^𝑁))) ∧ (𝐾‘(((bits‘𝐴) sadd (bits‘𝐵)) ∩ (0..^𝑁))) < (2↑𝑁))) → ((𝐾‘(((bits‘𝐴) sadd (bits‘𝐵)) ∩ (0..^𝑁))) mod (2↑𝑁)) = (𝐾‘(((bits‘𝐴) sadd (bits‘𝐵)) ∩ (0..^𝑁))))
129111, 22, 112, 127, 128syl22anc 1324 . . . 4 (𝜑 → ((𝐾‘(((bits‘𝐴) sadd (bits‘𝐵)) ∩ (0..^𝑁))) mod (2↑𝑁)) = (𝐾‘(((bits‘𝐴) sadd (bits‘𝐵)) ∩ (0..^𝑁))))
13095, 99, 1293eqtr2d 2661 . . 3 (𝜑 → ((𝐴 + 𝐵) mod (2↑𝑁)) = (𝐾‘(((bits‘𝐴) sadd (bits‘𝐵)) ∩ (0..^𝑁))))
131130fveq2d 6152 . 2 (𝜑 → (bits‘((𝐴 + 𝐵) mod (2↑𝑁))) = (bits‘(𝐾‘(((bits‘𝐴) sadd (bits‘𝐵)) ∩ (0..^𝑁)))))
132131, 120eqtr2d 2656 1 (𝜑 → (((bits‘𝐴) sadd (bits‘𝐵)) ∩ (0..^𝑁)) = (bits‘((𝐴 + 𝐵) mod (2↑𝑁))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384   = wceq 1480  caddwcad 1542  wcel 1987  wne 2790  cin 3554  wss 3555  c0 3891  ifcif 4058  𝒫 cpw 4130   class class class wbr 4613  cmpt 4673  ccnv 5073  cres 5076  wf 5843  1-1-ontowf1o 5846  cfv 5847  (class class class)co 6604  cmpt2 6606  1𝑜c1o 7498  2𝑜c2o 7499  Fincfn 7899  cr 9879  0cc0 9880  1c1 9881   + caddc 9883   < clt 10018  cle 10019  cmin 10210   / cdiv 10628  cn 10964  2c2 11014  0cn0 11236  cz 11321  +crp 11776  ..^cfzo 12406   mod cmo 12608  seqcseq 12741  cexp 12800  cdvds 14907  bitscbits 15065   sadd csad 15066
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4731  ax-sep 4741  ax-nul 4749  ax-pow 4803  ax-pr 4867  ax-un 6902  ax-inf2 8482  ax-cnex 9936  ax-resscn 9937  ax-1cn 9938  ax-icn 9939  ax-addcl 9940  ax-addrcl 9941  ax-mulcl 9942  ax-mulrcl 9943  ax-mulcom 9944  ax-addass 9945  ax-mulass 9946  ax-distr 9947  ax-i2m1 9948  ax-1ne0 9949  ax-1rid 9950  ax-rnegex 9951  ax-rrecex 9952  ax-cnre 9953  ax-pre-lttri 9954  ax-pre-lttrn 9955  ax-pre-ltadd 9956  ax-pre-mulgt0 9957  ax-pre-sup 9958
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-xor 1462  df-tru 1483  df-fal 1486  df-had 1530  df-cad 1543  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-reu 2914  df-rmo 2915  df-rab 2916  df-v 3188  df-sbc 3418  df-csb 3515  df-dif 3558  df-un 3560  df-in 3562  df-ss 3569  df-pss 3571  df-nul 3892  df-if 4059  df-pw 4132  df-sn 4149  df-pr 4151  df-tp 4153  df-op 4155  df-uni 4403  df-int 4441  df-iun 4487  df-disj 4584  df-br 4614  df-opab 4674  df-mpt 4675  df-tr 4713  df-eprel 4985  df-id 4989  df-po 4995  df-so 4996  df-fr 5033  df-se 5034  df-we 5035  df-xp 5080  df-rel 5081  df-cnv 5082  df-co 5083  df-dm 5084  df-rn 5085  df-res 5086  df-ima 5087  df-pred 5639  df-ord 5685  df-on 5686  df-lim 5687  df-suc 5688  df-iota 5810  df-fun 5849  df-fn 5850  df-f 5851  df-f1 5852  df-fo 5853  df-f1o 5854  df-fv 5855  df-isom 5856  df-riota 6565  df-ov 6607  df-oprab 6608  df-mpt2 6609  df-om 7013  df-1st 7113  df-2nd 7114  df-wrecs 7352  df-recs 7413  df-rdg 7451  df-1o 7505  df-2o 7506  df-oadd 7509  df-er 7687  df-map 7804  df-pm 7805  df-en 7900  df-dom 7901  df-sdom 7902  df-fin 7903  df-sup 8292  df-inf 8293  df-oi 8359  df-card 8709  df-cda 8934  df-pnf 10020  df-mnf 10021  df-xr 10022  df-ltxr 10023  df-le 10024  df-sub 10212  df-neg 10213  df-div 10629  df-nn 10965  df-2 11023  df-3 11024  df-n0 11237  df-xnn0 11308  df-z 11322  df-uz 11632  df-rp 11777  df-fz 12269  df-fzo 12407  df-fl 12533  df-mod 12609  df-seq 12742  df-exp 12801  df-hash 13058  df-cj 13773  df-re 13774  df-im 13775  df-sqrt 13909  df-abs 13910  df-clim 14153  df-sum 14351  df-dvds 14908  df-bits 15068  df-sad 15097
This theorem is referenced by:  sadadd  15113
  Copyright terms: Public domain W3C validator