MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sadass Structured version   Visualization version   GIF version

Theorem sadass 15124
Description: Sequence addition is associative. (Contributed by Mario Carneiro, 9-Sep-2016.)
Assertion
Ref Expression
sadass ((𝐴 ⊆ ℕ0𝐵 ⊆ ℕ0𝐶 ⊆ ℕ0) → ((𝐴 sadd 𝐵) sadd 𝐶) = (𝐴 sadd (𝐵 sadd 𝐶)))

Proof of Theorem sadass
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 sadcl 15115 . . . . 5 ((𝐴 ⊆ ℕ0𝐵 ⊆ ℕ0) → (𝐴 sadd 𝐵) ⊆ ℕ0)
2 sadcl 15115 . . . . 5 (((𝐴 sadd 𝐵) ⊆ ℕ0𝐶 ⊆ ℕ0) → ((𝐴 sadd 𝐵) sadd 𝐶) ⊆ ℕ0)
31, 2stoic3 1698 . . . 4 ((𝐴 ⊆ ℕ0𝐵 ⊆ ℕ0𝐶 ⊆ ℕ0) → ((𝐴 sadd 𝐵) sadd 𝐶) ⊆ ℕ0)
43sseld 3586 . . 3 ((𝐴 ⊆ ℕ0𝐵 ⊆ ℕ0𝐶 ⊆ ℕ0) → (𝑘 ∈ ((𝐴 sadd 𝐵) sadd 𝐶) → 𝑘 ∈ ℕ0))
5 simp1 1059 . . . . 5 ((𝐴 ⊆ ℕ0𝐵 ⊆ ℕ0𝐶 ⊆ ℕ0) → 𝐴 ⊆ ℕ0)
6 sadcl 15115 . . . . . 6 ((𝐵 ⊆ ℕ0𝐶 ⊆ ℕ0) → (𝐵 sadd 𝐶) ⊆ ℕ0)
763adant1 1077 . . . . 5 ((𝐴 ⊆ ℕ0𝐵 ⊆ ℕ0𝐶 ⊆ ℕ0) → (𝐵 sadd 𝐶) ⊆ ℕ0)
8 sadcl 15115 . . . . 5 ((𝐴 ⊆ ℕ0 ∧ (𝐵 sadd 𝐶) ⊆ ℕ0) → (𝐴 sadd (𝐵 sadd 𝐶)) ⊆ ℕ0)
95, 7, 8syl2anc 692 . . . 4 ((𝐴 ⊆ ℕ0𝐵 ⊆ ℕ0𝐶 ⊆ ℕ0) → (𝐴 sadd (𝐵 sadd 𝐶)) ⊆ ℕ0)
109sseld 3586 . . 3 ((𝐴 ⊆ ℕ0𝐵 ⊆ ℕ0𝐶 ⊆ ℕ0) → (𝑘 ∈ (𝐴 sadd (𝐵 sadd 𝐶)) → 𝑘 ∈ ℕ0))
11 simpl1 1062 . . . . . . . 8 (((𝐴 ⊆ ℕ0𝐵 ⊆ ℕ0𝐶 ⊆ ℕ0) ∧ 𝑘 ∈ ℕ0) → 𝐴 ⊆ ℕ0)
12 simpl2 1063 . . . . . . . 8 (((𝐴 ⊆ ℕ0𝐵 ⊆ ℕ0𝐶 ⊆ ℕ0) ∧ 𝑘 ∈ ℕ0) → 𝐵 ⊆ ℕ0)
13 simpl3 1064 . . . . . . . 8 (((𝐴 ⊆ ℕ0𝐵 ⊆ ℕ0𝐶 ⊆ ℕ0) ∧ 𝑘 ∈ ℕ0) → 𝐶 ⊆ ℕ0)
14 simpr 477 . . . . . . . . 9 (((𝐴 ⊆ ℕ0𝐵 ⊆ ℕ0𝐶 ⊆ ℕ0) ∧ 𝑘 ∈ ℕ0) → 𝑘 ∈ ℕ0)
15 1nn0 11259 . . . . . . . . . 10 1 ∈ ℕ0
1615a1i 11 . . . . . . . . 9 (((𝐴 ⊆ ℕ0𝐵 ⊆ ℕ0𝐶 ⊆ ℕ0) ∧ 𝑘 ∈ ℕ0) → 1 ∈ ℕ0)
1714, 16nn0addcld 11306 . . . . . . . 8 (((𝐴 ⊆ ℕ0𝐵 ⊆ ℕ0𝐶 ⊆ ℕ0) ∧ 𝑘 ∈ ℕ0) → (𝑘 + 1) ∈ ℕ0)
1811, 12, 13, 17sadasslem 15123 . . . . . . 7 (((𝐴 ⊆ ℕ0𝐵 ⊆ ℕ0𝐶 ⊆ ℕ0) ∧ 𝑘 ∈ ℕ0) → (((𝐴 sadd 𝐵) sadd 𝐶) ∩ (0..^(𝑘 + 1))) = ((𝐴 sadd (𝐵 sadd 𝐶)) ∩ (0..^(𝑘 + 1))))
1918eleq2d 2684 . . . . . 6 (((𝐴 ⊆ ℕ0𝐵 ⊆ ℕ0𝐶 ⊆ ℕ0) ∧ 𝑘 ∈ ℕ0) → (𝑘 ∈ (((𝐴 sadd 𝐵) sadd 𝐶) ∩ (0..^(𝑘 + 1))) ↔ 𝑘 ∈ ((𝐴 sadd (𝐵 sadd 𝐶)) ∩ (0..^(𝑘 + 1)))))
20 elin 3779 . . . . . 6 (𝑘 ∈ (((𝐴 sadd 𝐵) sadd 𝐶) ∩ (0..^(𝑘 + 1))) ↔ (𝑘 ∈ ((𝐴 sadd 𝐵) sadd 𝐶) ∧ 𝑘 ∈ (0..^(𝑘 + 1))))
21 elin 3779 . . . . . 6 (𝑘 ∈ ((𝐴 sadd (𝐵 sadd 𝐶)) ∩ (0..^(𝑘 + 1))) ↔ (𝑘 ∈ (𝐴 sadd (𝐵 sadd 𝐶)) ∧ 𝑘 ∈ (0..^(𝑘 + 1))))
2219, 20, 213bitr3g 302 . . . . 5 (((𝐴 ⊆ ℕ0𝐵 ⊆ ℕ0𝐶 ⊆ ℕ0) ∧ 𝑘 ∈ ℕ0) → ((𝑘 ∈ ((𝐴 sadd 𝐵) sadd 𝐶) ∧ 𝑘 ∈ (0..^(𝑘 + 1))) ↔ (𝑘 ∈ (𝐴 sadd (𝐵 sadd 𝐶)) ∧ 𝑘 ∈ (0..^(𝑘 + 1)))))
23 nn0uz 11673 . . . . . . . . 9 0 = (ℤ‘0)
2414, 23syl6eleq 2708 . . . . . . . 8 (((𝐴 ⊆ ℕ0𝐵 ⊆ ℕ0𝐶 ⊆ ℕ0) ∧ 𝑘 ∈ ℕ0) → 𝑘 ∈ (ℤ‘0))
25 eluzfz2 12298 . . . . . . . 8 (𝑘 ∈ (ℤ‘0) → 𝑘 ∈ (0...𝑘))
2624, 25syl 17 . . . . . . 7 (((𝐴 ⊆ ℕ0𝐵 ⊆ ℕ0𝐶 ⊆ ℕ0) ∧ 𝑘 ∈ ℕ0) → 𝑘 ∈ (0...𝑘))
2714nn0zd 11431 . . . . . . . 8 (((𝐴 ⊆ ℕ0𝐵 ⊆ ℕ0𝐶 ⊆ ℕ0) ∧ 𝑘 ∈ ℕ0) → 𝑘 ∈ ℤ)
28 fzval3 12484 . . . . . . . 8 (𝑘 ∈ ℤ → (0...𝑘) = (0..^(𝑘 + 1)))
2927, 28syl 17 . . . . . . 7 (((𝐴 ⊆ ℕ0𝐵 ⊆ ℕ0𝐶 ⊆ ℕ0) ∧ 𝑘 ∈ ℕ0) → (0...𝑘) = (0..^(𝑘 + 1)))
3026, 29eleqtrd 2700 . . . . . 6 (((𝐴 ⊆ ℕ0𝐵 ⊆ ℕ0𝐶 ⊆ ℕ0) ∧ 𝑘 ∈ ℕ0) → 𝑘 ∈ (0..^(𝑘 + 1)))
3130biantrud 528 . . . . 5 (((𝐴 ⊆ ℕ0𝐵 ⊆ ℕ0𝐶 ⊆ ℕ0) ∧ 𝑘 ∈ ℕ0) → (𝑘 ∈ ((𝐴 sadd 𝐵) sadd 𝐶) ↔ (𝑘 ∈ ((𝐴 sadd 𝐵) sadd 𝐶) ∧ 𝑘 ∈ (0..^(𝑘 + 1)))))
3230biantrud 528 . . . . 5 (((𝐴 ⊆ ℕ0𝐵 ⊆ ℕ0𝐶 ⊆ ℕ0) ∧ 𝑘 ∈ ℕ0) → (𝑘 ∈ (𝐴 sadd (𝐵 sadd 𝐶)) ↔ (𝑘 ∈ (𝐴 sadd (𝐵 sadd 𝐶)) ∧ 𝑘 ∈ (0..^(𝑘 + 1)))))
3322, 31, 323bitr4d 300 . . . 4 (((𝐴 ⊆ ℕ0𝐵 ⊆ ℕ0𝐶 ⊆ ℕ0) ∧ 𝑘 ∈ ℕ0) → (𝑘 ∈ ((𝐴 sadd 𝐵) sadd 𝐶) ↔ 𝑘 ∈ (𝐴 sadd (𝐵 sadd 𝐶))))
3433ex 450 . . 3 ((𝐴 ⊆ ℕ0𝐵 ⊆ ℕ0𝐶 ⊆ ℕ0) → (𝑘 ∈ ℕ0 → (𝑘 ∈ ((𝐴 sadd 𝐵) sadd 𝐶) ↔ 𝑘 ∈ (𝐴 sadd (𝐵 sadd 𝐶)))))
354, 10, 34pm5.21ndd 369 . 2 ((𝐴 ⊆ ℕ0𝐵 ⊆ ℕ0𝐶 ⊆ ℕ0) → (𝑘 ∈ ((𝐴 sadd 𝐵) sadd 𝐶) ↔ 𝑘 ∈ (𝐴 sadd (𝐵 sadd 𝐶))))
3635eqrdv 2619 1 ((𝐴 ⊆ ℕ0𝐵 ⊆ ℕ0𝐶 ⊆ ℕ0) → ((𝐴 sadd 𝐵) sadd 𝐶) = (𝐴 sadd (𝐵 sadd 𝐶)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384  w3a 1036   = wceq 1480  wcel 1987  cin 3558  wss 3559  cfv 5852  (class class class)co 6610  0cc0 9887  1c1 9888   + caddc 9890  0cn0 11243  cz 11328  cuz 11638  ...cfz 12275  ..^cfzo 12413   sadd csad 15073
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4736  ax-sep 4746  ax-nul 4754  ax-pow 4808  ax-pr 4872  ax-un 6909  ax-inf2 8489  ax-cnex 9943  ax-resscn 9944  ax-1cn 9945  ax-icn 9946  ax-addcl 9947  ax-addrcl 9948  ax-mulcl 9949  ax-mulrcl 9950  ax-mulcom 9951  ax-addass 9952  ax-mulass 9953  ax-distr 9954  ax-i2m1 9955  ax-1ne0 9956  ax-1rid 9957  ax-rnegex 9958  ax-rrecex 9959  ax-cnre 9960  ax-pre-lttri 9961  ax-pre-lttrn 9962  ax-pre-ltadd 9963  ax-pre-mulgt0 9964  ax-pre-sup 9965
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-xor 1462  df-tru 1483  df-fal 1486  df-had 1530  df-cad 1543  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-reu 2914  df-rmo 2915  df-rab 2916  df-v 3191  df-sbc 3422  df-csb 3519  df-dif 3562  df-un 3564  df-in 3566  df-ss 3573  df-pss 3575  df-nul 3897  df-if 4064  df-pw 4137  df-sn 4154  df-pr 4156  df-tp 4158  df-op 4160  df-uni 4408  df-int 4446  df-iun 4492  df-disj 4589  df-br 4619  df-opab 4679  df-mpt 4680  df-tr 4718  df-eprel 4990  df-id 4994  df-po 5000  df-so 5001  df-fr 5038  df-se 5039  df-we 5040  df-xp 5085  df-rel 5086  df-cnv 5087  df-co 5088  df-dm 5089  df-rn 5090  df-res 5091  df-ima 5092  df-pred 5644  df-ord 5690  df-on 5691  df-lim 5692  df-suc 5693  df-iota 5815  df-fun 5854  df-fn 5855  df-f 5856  df-f1 5857  df-fo 5858  df-f1o 5859  df-fv 5860  df-isom 5861  df-riota 6571  df-ov 6613  df-oprab 6614  df-mpt2 6615  df-om 7020  df-1st 7120  df-2nd 7121  df-wrecs 7359  df-recs 7420  df-rdg 7458  df-1o 7512  df-2o 7513  df-oadd 7516  df-er 7694  df-map 7811  df-pm 7812  df-en 7907  df-dom 7908  df-sdom 7909  df-fin 7910  df-sup 8299  df-inf 8300  df-oi 8366  df-card 8716  df-cda 8941  df-pnf 10027  df-mnf 10028  df-xr 10029  df-ltxr 10030  df-le 10031  df-sub 10219  df-neg 10220  df-div 10636  df-nn 10972  df-2 11030  df-3 11031  df-n0 11244  df-xnn0 11315  df-z 11329  df-uz 11639  df-rp 11784  df-fz 12276  df-fzo 12414  df-fl 12540  df-mod 12616  df-seq 12749  df-exp 12808  df-hash 13065  df-cj 13780  df-re 13781  df-im 13782  df-sqrt 13916  df-abs 13917  df-clim 14160  df-sum 14358  df-dvds 14915  df-bits 15075  df-sad 15104
This theorem is referenced by:  bitsres  15126
  Copyright terms: Public domain W3C validator