MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sadcf Structured version   Visualization version   GIF version

Theorem sadcf 15094
Description: The carry sequence is a sequence of elements of 2𝑜 encoding a "sequence of wffs". (Contributed by Mario Carneiro, 5-Sep-2016.)
Hypotheses
Ref Expression
sadval.a (𝜑𝐴 ⊆ ℕ0)
sadval.b (𝜑𝐵 ⊆ ℕ0)
sadval.c 𝐶 = seq0((𝑐 ∈ 2𝑜, 𝑚 ∈ ℕ0 ↦ if(cadd(𝑚𝐴, 𝑚𝐵, ∅ ∈ 𝑐), 1𝑜, ∅)), (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1))))
Assertion
Ref Expression
sadcf (𝜑𝐶:ℕ0⟶2𝑜)
Distinct variable groups:   𝑚,𝑐,𝑛   𝐴,𝑐,𝑚   𝐵,𝑐,𝑚
Allowed substitution hints:   𝜑(𝑚,𝑛,𝑐)   𝐴(𝑛)   𝐵(𝑛)   𝐶(𝑚,𝑛,𝑐)

Proof of Theorem sadcf
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 0nn0 11252 . . . . . 6 0 ∈ ℕ0
2 iftrue 4069 . . . . . . 7 (𝑛 = 0 → if(𝑛 = 0, ∅, (𝑛 − 1)) = ∅)
3 eqid 2626 . . . . . . 7 (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1))) = (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1)))
4 0ex 4755 . . . . . . 7 ∅ ∈ V
52, 3, 4fvmpt 6240 . . . . . 6 (0 ∈ ℕ0 → ((𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1)))‘0) = ∅)
61, 5ax-mp 5 . . . . 5 ((𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1)))‘0) = ∅
74prid1 4272 . . . . . 6 ∅ ∈ {∅, 1𝑜}
8 df2o3 7519 . . . . . 6 2𝑜 = {∅, 1𝑜}
97, 8eleqtrri 2703 . . . . 5 ∅ ∈ 2𝑜
106, 9eqeltri 2700 . . . 4 ((𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1)))‘0) ∈ 2𝑜
1110a1i 11 . . 3 (𝜑 → ((𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1)))‘0) ∈ 2𝑜)
12 df-ov 6608 . . . . 5 (𝑥(𝑐 ∈ 2𝑜, 𝑚 ∈ ℕ0 ↦ if(cadd(𝑚𝐴, 𝑚𝐵, ∅ ∈ 𝑐), 1𝑜, ∅))𝑦) = ((𝑐 ∈ 2𝑜, 𝑚 ∈ ℕ0 ↦ if(cadd(𝑚𝐴, 𝑚𝐵, ∅ ∈ 𝑐), 1𝑜, ∅))‘⟨𝑥, 𝑦⟩)
13 1on 7513 . . . . . . . . . . . 12 1𝑜 ∈ On
1413elexi 3204 . . . . . . . . . . 11 1𝑜 ∈ V
1514prid2 4273 . . . . . . . . . 10 1𝑜 ∈ {∅, 1𝑜}
1615, 8eleqtrri 2703 . . . . . . . . 9 1𝑜 ∈ 2𝑜
1716, 9keepel 4132 . . . . . . . 8 if(cadd(𝑚𝐴, 𝑚𝐵, ∅ ∈ 𝑐), 1𝑜, ∅) ∈ 2𝑜
1817rgen2w 2925 . . . . . . 7 𝑐 ∈ 2𝑜𝑚 ∈ ℕ0 if(cadd(𝑚𝐴, 𝑚𝐵, ∅ ∈ 𝑐), 1𝑜, ∅) ∈ 2𝑜
19 eqid 2626 . . . . . . . 8 (𝑐 ∈ 2𝑜, 𝑚 ∈ ℕ0 ↦ if(cadd(𝑚𝐴, 𝑚𝐵, ∅ ∈ 𝑐), 1𝑜, ∅)) = (𝑐 ∈ 2𝑜, 𝑚 ∈ ℕ0 ↦ if(cadd(𝑚𝐴, 𝑚𝐵, ∅ ∈ 𝑐), 1𝑜, ∅))
2019fmpt2 7183 . . . . . . 7 (∀𝑐 ∈ 2𝑜𝑚 ∈ ℕ0 if(cadd(𝑚𝐴, 𝑚𝐵, ∅ ∈ 𝑐), 1𝑜, ∅) ∈ 2𝑜 ↔ (𝑐 ∈ 2𝑜, 𝑚 ∈ ℕ0 ↦ if(cadd(𝑚𝐴, 𝑚𝐵, ∅ ∈ 𝑐), 1𝑜, ∅)):(2𝑜 × ℕ0)⟶2𝑜)
2118, 20mpbi 220 . . . . . 6 (𝑐 ∈ 2𝑜, 𝑚 ∈ ℕ0 ↦ if(cadd(𝑚𝐴, 𝑚𝐵, ∅ ∈ 𝑐), 1𝑜, ∅)):(2𝑜 × ℕ0)⟶2𝑜
2221, 9f0cli 6327 . . . . 5 ((𝑐 ∈ 2𝑜, 𝑚 ∈ ℕ0 ↦ if(cadd(𝑚𝐴, 𝑚𝐵, ∅ ∈ 𝑐), 1𝑜, ∅))‘⟨𝑥, 𝑦⟩) ∈ 2𝑜
2312, 22eqeltri 2700 . . . 4 (𝑥(𝑐 ∈ 2𝑜, 𝑚 ∈ ℕ0 ↦ if(cadd(𝑚𝐴, 𝑚𝐵, ∅ ∈ 𝑐), 1𝑜, ∅))𝑦) ∈ 2𝑜
2423a1i 11 . . 3 ((𝜑 ∧ (𝑥 ∈ 2𝑜𝑦 ∈ V)) → (𝑥(𝑐 ∈ 2𝑜, 𝑚 ∈ ℕ0 ↦ if(cadd(𝑚𝐴, 𝑚𝐵, ∅ ∈ 𝑐), 1𝑜, ∅))𝑦) ∈ 2𝑜)
25 nn0uz 11666 . . 3 0 = (ℤ‘0)
26 0zd 11334 . . 3 (𝜑 → 0 ∈ ℤ)
27 fvex 6160 . . . 4 ((𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1)))‘𝑥) ∈ V
2827a1i 11 . . 3 ((𝜑𝑥 ∈ (ℤ‘(0 + 1))) → ((𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1)))‘𝑥) ∈ V)
2911, 24, 25, 26, 28seqf2 12757 . 2 (𝜑 → seq0((𝑐 ∈ 2𝑜, 𝑚 ∈ ℕ0 ↦ if(cadd(𝑚𝐴, 𝑚𝐵, ∅ ∈ 𝑐), 1𝑜, ∅)), (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1)))):ℕ0⟶2𝑜)
30 sadval.c . . 3 𝐶 = seq0((𝑐 ∈ 2𝑜, 𝑚 ∈ ℕ0 ↦ if(cadd(𝑚𝐴, 𝑚𝐵, ∅ ∈ 𝑐), 1𝑜, ∅)), (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1))))
3130feq1i 5995 . 2 (𝐶:ℕ0⟶2𝑜 ↔ seq0((𝑐 ∈ 2𝑜, 𝑚 ∈ ℕ0 ↦ if(cadd(𝑚𝐴, 𝑚𝐵, ∅ ∈ 𝑐), 1𝑜, ∅)), (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1)))):ℕ0⟶2𝑜)
3229, 31sylibr 224 1 (𝜑𝐶:ℕ0⟶2𝑜)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384   = wceq 1480  caddwcad 1542  wcel 1992  wral 2912  Vcvv 3191  wss 3560  c0 3896  ifcif 4063  {cpr 4155  cop 4159  cmpt 4678   × cxp 5077  Oncon0 5685  wf 5846  cfv 5850  (class class class)co 6605  cmpt2 6607  1𝑜c1o 7499  2𝑜c2o 7500  0cc0 9881  1c1 9882   + caddc 9884  cmin 10211  0cn0 11237  cuz 11631  seqcseq 12738
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1841  ax-6 1890  ax-7 1937  ax-8 1994  ax-9 2001  ax-10 2021  ax-11 2036  ax-12 2049  ax-13 2250  ax-ext 2606  ax-sep 4746  ax-nul 4754  ax-pow 4808  ax-pr 4872  ax-un 6903  ax-cnex 9937  ax-resscn 9938  ax-1cn 9939  ax-icn 9940  ax-addcl 9941  ax-addrcl 9942  ax-mulcl 9943  ax-mulrcl 9944  ax-mulcom 9945  ax-addass 9946  ax-mulass 9947  ax-distr 9948  ax-i2m1 9949  ax-1ne0 9950  ax-1rid 9951  ax-rnegex 9952  ax-rrecex 9953  ax-cnre 9954  ax-pre-lttri 9955  ax-pre-lttrn 9956  ax-pre-ltadd 9957  ax-pre-mulgt0 9958
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1883  df-eu 2478  df-mo 2479  df-clab 2613  df-cleq 2619  df-clel 2622  df-nfc 2756  df-ne 2797  df-nel 2900  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3193  df-sbc 3423  df-csb 3520  df-dif 3563  df-un 3565  df-in 3567  df-ss 3574  df-pss 3576  df-nul 3897  df-if 4064  df-pw 4137  df-sn 4154  df-pr 4156  df-tp 4158  df-op 4160  df-uni 4408  df-iun 4492  df-br 4619  df-opab 4679  df-mpt 4680  df-tr 4718  df-eprel 4990  df-id 4994  df-po 5000  df-so 5001  df-fr 5038  df-we 5040  df-xp 5085  df-rel 5086  df-cnv 5087  df-co 5088  df-dm 5089  df-rn 5090  df-res 5091  df-ima 5092  df-pred 5642  df-ord 5688  df-on 5689  df-lim 5690  df-suc 5691  df-iota 5813  df-fun 5852  df-fn 5853  df-f 5854  df-f1 5855  df-fo 5856  df-f1o 5857  df-fv 5858  df-riota 6566  df-ov 6608  df-oprab 6609  df-mpt2 6610  df-om 7014  df-1st 7116  df-2nd 7117  df-wrecs 7353  df-recs 7414  df-rdg 7452  df-1o 7506  df-2o 7507  df-er 7688  df-en 7901  df-dom 7902  df-sdom 7903  df-pnf 10021  df-mnf 10022  df-xr 10023  df-ltxr 10024  df-le 10025  df-sub 10213  df-neg 10214  df-nn 10966  df-n0 11238  df-z 11323  df-uz 11632  df-fz 12266  df-seq 12739
This theorem is referenced by:  sadcp1  15096
  Copyright terms: Public domain W3C validator