MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sadcf Structured version   Visualization version   GIF version

Theorem sadcf 15348
Description: The carry sequence is a sequence of elements of 2𝑜 encoding a "sequence of wffs". (Contributed by Mario Carneiro, 5-Sep-2016.)
Hypotheses
Ref Expression
sadval.a (𝜑𝐴 ⊆ ℕ0)
sadval.b (𝜑𝐵 ⊆ ℕ0)
sadval.c 𝐶 = seq0((𝑐 ∈ 2𝑜, 𝑚 ∈ ℕ0 ↦ if(cadd(𝑚𝐴, 𝑚𝐵, ∅ ∈ 𝑐), 1𝑜, ∅)), (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1))))
Assertion
Ref Expression
sadcf (𝜑𝐶:ℕ0⟶2𝑜)
Distinct variable groups:   𝑚,𝑐,𝑛   𝐴,𝑐,𝑚   𝐵,𝑐,𝑚
Allowed substitution hints:   𝜑(𝑚,𝑛,𝑐)   𝐴(𝑛)   𝐵(𝑛)   𝐶(𝑚,𝑛,𝑐)

Proof of Theorem sadcf
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 0nn0 11470 . . . . . 6 0 ∈ ℕ0
2 iftrue 4224 . . . . . . 7 (𝑛 = 0 → if(𝑛 = 0, ∅, (𝑛 − 1)) = ∅)
3 eqid 2748 . . . . . . 7 (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1))) = (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1)))
4 0ex 4930 . . . . . . 7 ∅ ∈ V
52, 3, 4fvmpt 6432 . . . . . 6 (0 ∈ ℕ0 → ((𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1)))‘0) = ∅)
61, 5ax-mp 5 . . . . 5 ((𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1)))‘0) = ∅
74prid1 4429 . . . . . 6 ∅ ∈ {∅, 1𝑜}
8 df2o3 7730 . . . . . 6 2𝑜 = {∅, 1𝑜}
97, 8eleqtrri 2826 . . . . 5 ∅ ∈ 2𝑜
106, 9eqeltri 2823 . . . 4 ((𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1)))‘0) ∈ 2𝑜
1110a1i 11 . . 3 (𝜑 → ((𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1)))‘0) ∈ 2𝑜)
12 df-ov 6804 . . . . 5 (𝑥(𝑐 ∈ 2𝑜, 𝑚 ∈ ℕ0 ↦ if(cadd(𝑚𝐴, 𝑚𝐵, ∅ ∈ 𝑐), 1𝑜, ∅))𝑦) = ((𝑐 ∈ 2𝑜, 𝑚 ∈ ℕ0 ↦ if(cadd(𝑚𝐴, 𝑚𝐵, ∅ ∈ 𝑐), 1𝑜, ∅))‘⟨𝑥, 𝑦⟩)
13 1on 7724 . . . . . . . . . . . 12 1𝑜 ∈ On
1413elexi 3341 . . . . . . . . . . 11 1𝑜 ∈ V
1514prid2 4430 . . . . . . . . . 10 1𝑜 ∈ {∅, 1𝑜}
1615, 8eleqtrri 2826 . . . . . . . . 9 1𝑜 ∈ 2𝑜
1716, 9keepel 4287 . . . . . . . 8 if(cadd(𝑚𝐴, 𝑚𝐵, ∅ ∈ 𝑐), 1𝑜, ∅) ∈ 2𝑜
1817rgen2w 3051 . . . . . . 7 𝑐 ∈ 2𝑜𝑚 ∈ ℕ0 if(cadd(𝑚𝐴, 𝑚𝐵, ∅ ∈ 𝑐), 1𝑜, ∅) ∈ 2𝑜
19 eqid 2748 . . . . . . . 8 (𝑐 ∈ 2𝑜, 𝑚 ∈ ℕ0 ↦ if(cadd(𝑚𝐴, 𝑚𝐵, ∅ ∈ 𝑐), 1𝑜, ∅)) = (𝑐 ∈ 2𝑜, 𝑚 ∈ ℕ0 ↦ if(cadd(𝑚𝐴, 𝑚𝐵, ∅ ∈ 𝑐), 1𝑜, ∅))
2019fmpt2 7393 . . . . . . 7 (∀𝑐 ∈ 2𝑜𝑚 ∈ ℕ0 if(cadd(𝑚𝐴, 𝑚𝐵, ∅ ∈ 𝑐), 1𝑜, ∅) ∈ 2𝑜 ↔ (𝑐 ∈ 2𝑜, 𝑚 ∈ ℕ0 ↦ if(cadd(𝑚𝐴, 𝑚𝐵, ∅ ∈ 𝑐), 1𝑜, ∅)):(2𝑜 × ℕ0)⟶2𝑜)
2118, 20mpbi 220 . . . . . 6 (𝑐 ∈ 2𝑜, 𝑚 ∈ ℕ0 ↦ if(cadd(𝑚𝐴, 𝑚𝐵, ∅ ∈ 𝑐), 1𝑜, ∅)):(2𝑜 × ℕ0)⟶2𝑜
2221, 9f0cli 6521 . . . . 5 ((𝑐 ∈ 2𝑜, 𝑚 ∈ ℕ0 ↦ if(cadd(𝑚𝐴, 𝑚𝐵, ∅ ∈ 𝑐), 1𝑜, ∅))‘⟨𝑥, 𝑦⟩) ∈ 2𝑜
2312, 22eqeltri 2823 . . . 4 (𝑥(𝑐 ∈ 2𝑜, 𝑚 ∈ ℕ0 ↦ if(cadd(𝑚𝐴, 𝑚𝐵, ∅ ∈ 𝑐), 1𝑜, ∅))𝑦) ∈ 2𝑜
2423a1i 11 . . 3 ((𝜑 ∧ (𝑥 ∈ 2𝑜𝑦 ∈ V)) → (𝑥(𝑐 ∈ 2𝑜, 𝑚 ∈ ℕ0 ↦ if(cadd(𝑚𝐴, 𝑚𝐵, ∅ ∈ 𝑐), 1𝑜, ∅))𝑦) ∈ 2𝑜)
25 nn0uz 11886 . . 3 0 = (ℤ‘0)
26 0zd 11552 . . 3 (𝜑 → 0 ∈ ℤ)
27 fvexd 6352 . . 3 ((𝜑𝑥 ∈ (ℤ‘(0 + 1))) → ((𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1)))‘𝑥) ∈ V)
2811, 24, 25, 26, 27seqf2 12985 . 2 (𝜑 → seq0((𝑐 ∈ 2𝑜, 𝑚 ∈ ℕ0 ↦ if(cadd(𝑚𝐴, 𝑚𝐵, ∅ ∈ 𝑐), 1𝑜, ∅)), (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1)))):ℕ0⟶2𝑜)
29 sadval.c . . 3 𝐶 = seq0((𝑐 ∈ 2𝑜, 𝑚 ∈ ℕ0 ↦ if(cadd(𝑚𝐴, 𝑚𝐵, ∅ ∈ 𝑐), 1𝑜, ∅)), (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1))))
3029feq1i 6185 . 2 (𝐶:ℕ0⟶2𝑜 ↔ seq0((𝑐 ∈ 2𝑜, 𝑚 ∈ ℕ0 ↦ if(cadd(𝑚𝐴, 𝑚𝐵, ∅ ∈ 𝑐), 1𝑜, ∅)), (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1)))):ℕ0⟶2𝑜)
3128, 30sylibr 224 1 (𝜑𝐶:ℕ0⟶2𝑜)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383   = wceq 1620  caddwcad 1682  wcel 2127  wral 3038  Vcvv 3328  wss 3703  c0 4046  ifcif 4218  {cpr 4311  cop 4315  cmpt 4869   × cxp 5252  Oncon0 5872  wf 6033  cfv 6037  (class class class)co 6801  cmpt2 6803  1𝑜c1o 7710  2𝑜c2o 7711  0cc0 10099  1c1 10100   + caddc 10102  cmin 10429  0cn0 11455  cuz 11850  seqcseq 12966
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1859  ax-4 1874  ax-5 1976  ax-6 2042  ax-7 2078  ax-8 2129  ax-9 2136  ax-10 2156  ax-11 2171  ax-12 2184  ax-13 2379  ax-ext 2728  ax-sep 4921  ax-nul 4929  ax-pow 4980  ax-pr 5043  ax-un 7102  ax-cnex 10155  ax-resscn 10156  ax-1cn 10157  ax-icn 10158  ax-addcl 10159  ax-addrcl 10160  ax-mulcl 10161  ax-mulrcl 10162  ax-mulcom 10163  ax-addass 10164  ax-mulass 10165  ax-distr 10166  ax-i2m1 10167  ax-1ne0 10168  ax-1rid 10169  ax-rnegex 10170  ax-rrecex 10171  ax-cnre 10172  ax-pre-lttri 10173  ax-pre-lttrn 10174  ax-pre-ltadd 10175  ax-pre-mulgt0 10176
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1623  df-ex 1842  df-nf 1847  df-sb 2035  df-eu 2599  df-mo 2600  df-clab 2735  df-cleq 2741  df-clel 2744  df-nfc 2879  df-ne 2921  df-nel 3024  df-ral 3043  df-rex 3044  df-reu 3045  df-rab 3047  df-v 3330  df-sbc 3565  df-csb 3663  df-dif 3706  df-un 3708  df-in 3710  df-ss 3717  df-pss 3719  df-nul 4047  df-if 4219  df-pw 4292  df-sn 4310  df-pr 4312  df-tp 4314  df-op 4316  df-uni 4577  df-iun 4662  df-br 4793  df-opab 4853  df-mpt 4870  df-tr 4893  df-id 5162  df-eprel 5167  df-po 5175  df-so 5176  df-fr 5213  df-we 5215  df-xp 5260  df-rel 5261  df-cnv 5262  df-co 5263  df-dm 5264  df-rn 5265  df-res 5266  df-ima 5267  df-pred 5829  df-ord 5875  df-on 5876  df-lim 5877  df-suc 5878  df-iota 6000  df-fun 6039  df-fn 6040  df-f 6041  df-f1 6042  df-fo 6043  df-f1o 6044  df-fv 6045  df-riota 6762  df-ov 6804  df-oprab 6805  df-mpt2 6806  df-om 7219  df-1st 7321  df-2nd 7322  df-wrecs 7564  df-recs 7625  df-rdg 7663  df-1o 7717  df-2o 7718  df-er 7899  df-en 8110  df-dom 8111  df-sdom 8112  df-pnf 10239  df-mnf 10240  df-xr 10241  df-ltxr 10242  df-le 10243  df-sub 10431  df-neg 10432  df-nn 11184  df-n0 11456  df-z 11541  df-uz 11851  df-fz 12491  df-seq 12967
This theorem is referenced by:  sadcp1  15350
  Copyright terms: Public domain W3C validator