Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  salgencntex Structured version   Visualization version   GIF version

Theorem salgencntex 39020
Description: This counterexample shows that df-salgen 38992 needs to require that all containing sigma-algebra have the same base set. Otherwise, the intersection could lead to a set that is not a sigma-algebra. (Contributed by Glauco Siliprandi, 3-Jan-2021.)
Hypotheses
Ref Expression
salgencntex.a 𝐴 = (0[,]2)
salgencntex.s 𝑆 = {𝑥 ∈ 𝒫 𝐴 ∣ (𝑥 ≼ ω ∨ (𝐴𝑥) ≼ ω)}
salgencntex.b 𝐵 = (0[,]1)
salgencntex.t 𝑇 = 𝒫 𝐵
salgencntex.c 𝐶 = (𝑆𝑇)
salgencntex.z 𝑍 = {𝑠 ∈ SAlg ∣ 𝐶𝑠}
Assertion
Ref Expression
salgencntex ¬ 𝑍 ∈ SAlg
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝐶,𝑠   𝑆,𝑠   𝑥,𝑆   𝑇,𝑠
Allowed substitution hints:   𝐴(𝑠)   𝐵(𝑠)   𝐶(𝑥)   𝑇(𝑥)   𝑍(𝑥,𝑠)

Proof of Theorem salgencntex
Dummy variables 𝑡 𝑦 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 saluni 39003 . 2 (𝑍 ∈ SAlg → 𝑍𝑍)
2 salgencntex.z . . . . . . . 8 𝑍 = {𝑠 ∈ SAlg ∣ 𝐶𝑠}
3 salgencntex.t . . . . . . . . . . . 12 𝑇 = 𝒫 𝐵
4 salgencntex.b . . . . . . . . . . . . . 14 𝐵 = (0[,]1)
5 ovex 6554 . . . . . . . . . . . . . 14 (0[,]1) ∈ V
64, 5eqeltri 2683 . . . . . . . . . . . . 13 𝐵 ∈ V
7 pwsal 38994 . . . . . . . . . . . . 13 (𝐵 ∈ V → 𝒫 𝐵 ∈ SAlg)
86, 7ax-mp 5 . . . . . . . . . . . 12 𝒫 𝐵 ∈ SAlg
93, 8eqeltri 2683 . . . . . . . . . . 11 𝑇 ∈ SAlg
10 salgencntex.c . . . . . . . . . . . 12 𝐶 = (𝑆𝑇)
11 inss2 3795 . . . . . . . . . . . 12 (𝑆𝑇) ⊆ 𝑇
1210, 11eqsstri 3597 . . . . . . . . . . 11 𝐶𝑇
139, 12pm3.2i 469 . . . . . . . . . 10 (𝑇 ∈ SAlg ∧ 𝐶𝑇)
14 sseq2 3589 . . . . . . . . . . 11 (𝑠 = 𝑇 → (𝐶𝑠𝐶𝑇))
1514elrab 3330 . . . . . . . . . 10 (𝑇 ∈ {𝑠 ∈ SAlg ∣ 𝐶𝑠} ↔ (𝑇 ∈ SAlg ∧ 𝐶𝑇))
1613, 15mpbir 219 . . . . . . . . 9 𝑇 ∈ {𝑠 ∈ SAlg ∣ 𝐶𝑠}
17 intss1 4421 . . . . . . . . 9 (𝑇 ∈ {𝑠 ∈ SAlg ∣ 𝐶𝑠} → {𝑠 ∈ SAlg ∣ 𝐶𝑠} ⊆ 𝑇)
1816, 17ax-mp 5 . . . . . . . 8 {𝑠 ∈ SAlg ∣ 𝐶𝑠} ⊆ 𝑇
192, 18eqsstri 3597 . . . . . . 7 𝑍𝑇
2019unissi 4391 . . . . . 6 𝑍 𝑇
213unieqi 4375 . . . . . . 7 𝑇 = 𝒫 𝐵
22 unipw 4838 . . . . . . 7 𝒫 𝐵 = 𝐵
2321, 22eqtri 2631 . . . . . 6 𝑇 = 𝐵
2420, 23sseqtri 3599 . . . . 5 𝑍𝐵
25 sseq2 3589 . . . . . . . . . . . . . . . . 17 (𝑠 = 𝑡 → (𝐶𝑠𝐶𝑡))
2625elrab 3330 . . . . . . . . . . . . . . . 16 (𝑡 ∈ {𝑠 ∈ SAlg ∣ 𝐶𝑠} ↔ (𝑡 ∈ SAlg ∧ 𝐶𝑡))
2726biimpi 204 . . . . . . . . . . . . . . 15 (𝑡 ∈ {𝑠 ∈ SAlg ∣ 𝐶𝑠} → (𝑡 ∈ SAlg ∧ 𝐶𝑡))
2827simprd 477 . . . . . . . . . . . . . 14 (𝑡 ∈ {𝑠 ∈ SAlg ∣ 𝐶𝑠} → 𝐶𝑡)
2928adantl 480 . . . . . . . . . . . . 13 ((𝑦𝐵𝑡 ∈ {𝑠 ∈ SAlg ∣ 𝐶𝑠}) → 𝐶𝑡)
30 0red 9897 . . . . . . . . . . . . . . . . . . . . 21 (𝑦𝐵 → 0 ∈ ℝ)
31 2re 10939 . . . . . . . . . . . . . . . . . . . . . 22 2 ∈ ℝ
3231a1i 11 . . . . . . . . . . . . . . . . . . . . 21 (𝑦𝐵 → 2 ∈ ℝ)
33 unitssre 12148 . . . . . . . . . . . . . . . . . . . . . 22 (0[,]1) ⊆ ℝ
34 id 22 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑦𝐵𝑦𝐵)
3534, 4syl6eleq 2697 . . . . . . . . . . . . . . . . . . . . . 22 (𝑦𝐵𝑦 ∈ (0[,]1))
3633, 35sseldi 3565 . . . . . . . . . . . . . . . . . . . . 21 (𝑦𝐵𝑦 ∈ ℝ)
3730rexrd 9945 . . . . . . . . . . . . . . . . . . . . . 22 (𝑦𝐵 → 0 ∈ ℝ*)
38 1re 9895 . . . . . . . . . . . . . . . . . . . . . . . 24 1 ∈ ℝ
3938rexri 9948 . . . . . . . . . . . . . . . . . . . . . . 23 1 ∈ ℝ*
4039a1i 11 . . . . . . . . . . . . . . . . . . . . . 22 (𝑦𝐵 → 1 ∈ ℝ*)
41 iccgelb 12059 . . . . . . . . . . . . . . . . . . . . . 22 ((0 ∈ ℝ* ∧ 1 ∈ ℝ*𝑦 ∈ (0[,]1)) → 0 ≤ 𝑦)
4237, 40, 35, 41syl3anc 1317 . . . . . . . . . . . . . . . . . . . . 21 (𝑦𝐵 → 0 ≤ 𝑦)
4338a1i 11 . . . . . . . . . . . . . . . . . . . . . 22 (𝑦𝐵 → 1 ∈ ℝ)
44 iccleub 12058 . . . . . . . . . . . . . . . . . . . . . . 23 ((0 ∈ ℝ* ∧ 1 ∈ ℝ*𝑦 ∈ (0[,]1)) → 𝑦 ≤ 1)
4537, 40, 35, 44syl3anc 1317 . . . . . . . . . . . . . . . . . . . . . 22 (𝑦𝐵𝑦 ≤ 1)
46 1le2 11090 . . . . . . . . . . . . . . . . . . . . . . 23 1 ≤ 2
4746a1i 11 . . . . . . . . . . . . . . . . . . . . . 22 (𝑦𝐵 → 1 ≤ 2)
4836, 43, 32, 45, 47letrd 10045 . . . . . . . . . . . . . . . . . . . . 21 (𝑦𝐵𝑦 ≤ 2)
4930, 32, 36, 42, 48eliccd 38356 . . . . . . . . . . . . . . . . . . . 20 (𝑦𝐵𝑦 ∈ (0[,]2))
50 salgencntex.a . . . . . . . . . . . . . . . . . . . 20 𝐴 = (0[,]2)
5149, 50syl6eleqr 2698 . . . . . . . . . . . . . . . . . . 19 (𝑦𝐵𝑦𝐴)
52 snelpwi 4833 . . . . . . . . . . . . . . . . . . 19 (𝑦𝐴 → {𝑦} ∈ 𝒫 𝐴)
5351, 52syl 17 . . . . . . . . . . . . . . . . . 18 (𝑦𝐵 → {𝑦} ∈ 𝒫 𝐴)
54 snfi 7900 . . . . . . . . . . . . . . . . . . . . 21 {𝑦} ∈ Fin
55 fict 8410 . . . . . . . . . . . . . . . . . . . . 21 ({𝑦} ∈ Fin → {𝑦} ≼ ω)
5654, 55ax-mp 5 . . . . . . . . . . . . . . . . . . . 20 {𝑦} ≼ ω
5756a1i 11 . . . . . . . . . . . . . . . . . . 19 (𝑦𝐵 → {𝑦} ≼ ω)
58 orc 398 . . . . . . . . . . . . . . . . . . 19 ({𝑦} ≼ ω → ({𝑦} ≼ ω ∨ (𝐴 ∖ {𝑦}) ≼ ω))
5957, 58syl 17 . . . . . . . . . . . . . . . . . 18 (𝑦𝐵 → ({𝑦} ≼ ω ∨ (𝐴 ∖ {𝑦}) ≼ ω))
6053, 59jca 552 . . . . . . . . . . . . . . . . 17 (𝑦𝐵 → ({𝑦} ∈ 𝒫 𝐴 ∧ ({𝑦} ≼ ω ∨ (𝐴 ∖ {𝑦}) ≼ ω)))
61 breq1 4580 . . . . . . . . . . . . . . . . . . 19 (𝑥 = {𝑦} → (𝑥 ≼ ω ↔ {𝑦} ≼ ω))
62 difeq2 3683 . . . . . . . . . . . . . . . . . . . 20 (𝑥 = {𝑦} → (𝐴𝑥) = (𝐴 ∖ {𝑦}))
6362breq1d 4587 . . . . . . . . . . . . . . . . . . 19 (𝑥 = {𝑦} → ((𝐴𝑥) ≼ ω ↔ (𝐴 ∖ {𝑦}) ≼ ω))
6461, 63orbi12d 741 . . . . . . . . . . . . . . . . . 18 (𝑥 = {𝑦} → ((𝑥 ≼ ω ∨ (𝐴𝑥) ≼ ω) ↔ ({𝑦} ≼ ω ∨ (𝐴 ∖ {𝑦}) ≼ ω)))
65 salgencntex.s . . . . . . . . . . . . . . . . . 18 𝑆 = {𝑥 ∈ 𝒫 𝐴 ∣ (𝑥 ≼ ω ∨ (𝐴𝑥) ≼ ω)}
6664, 65elrab2 3332 . . . . . . . . . . . . . . . . 17 ({𝑦} ∈ 𝑆 ↔ ({𝑦} ∈ 𝒫 𝐴 ∧ ({𝑦} ≼ ω ∨ (𝐴 ∖ {𝑦}) ≼ ω)))
6760, 66sylibr 222 . . . . . . . . . . . . . . . 16 (𝑦𝐵 → {𝑦} ∈ 𝑆)
68 snelpwi 4833 . . . . . . . . . . . . . . . . 17 (𝑦𝐵 → {𝑦} ∈ 𝒫 𝐵)
6968, 3syl6eleqr 2698 . . . . . . . . . . . . . . . 16 (𝑦𝐵 → {𝑦} ∈ 𝑇)
7067, 69elind 3759 . . . . . . . . . . . . . . 15 (𝑦𝐵 → {𝑦} ∈ (𝑆𝑇))
7110eqcomi 2618 . . . . . . . . . . . . . . . 16 (𝑆𝑇) = 𝐶
7271a1i 11 . . . . . . . . . . . . . . 15 (𝑦𝐵 → (𝑆𝑇) = 𝐶)
7370, 72eleqtrd 2689 . . . . . . . . . . . . . 14 (𝑦𝐵 → {𝑦} ∈ 𝐶)
7473adantr 479 . . . . . . . . . . . . 13 ((𝑦𝐵𝑡 ∈ {𝑠 ∈ SAlg ∣ 𝐶𝑠}) → {𝑦} ∈ 𝐶)
7529, 74sseldd 3568 . . . . . . . . . . . 12 ((𝑦𝐵𝑡 ∈ {𝑠 ∈ SAlg ∣ 𝐶𝑠}) → {𝑦} ∈ 𝑡)
7675ralrimiva 2948 . . . . . . . . . . 11 (𝑦𝐵 → ∀𝑡 ∈ {𝑠 ∈ SAlg ∣ 𝐶𝑠} {𝑦} ∈ 𝑡)
77 snex 4829 . . . . . . . . . . . 12 {𝑦} ∈ V
7877elint2 4411 . . . . . . . . . . 11 ({𝑦} ∈ {𝑠 ∈ SAlg ∣ 𝐶𝑠} ↔ ∀𝑡 ∈ {𝑠 ∈ SAlg ∣ 𝐶𝑠} {𝑦} ∈ 𝑡)
7976, 78sylibr 222 . . . . . . . . . 10 (𝑦𝐵 → {𝑦} ∈ {𝑠 ∈ SAlg ∣ 𝐶𝑠})
8079, 2syl6eleqr 2698 . . . . . . . . 9 (𝑦𝐵 → {𝑦} ∈ 𝑍)
81 snidg 4152 . . . . . . . . 9 (𝑦𝐵𝑦 ∈ {𝑦})
82 eleq2 2676 . . . . . . . . . 10 (𝑤 = {𝑦} → (𝑦𝑤𝑦 ∈ {𝑦}))
8382rspcev 3281 . . . . . . . . 9 (({𝑦} ∈ 𝑍𝑦 ∈ {𝑦}) → ∃𝑤𝑍 𝑦𝑤)
8480, 81, 83syl2anc 690 . . . . . . . 8 (𝑦𝐵 → ∃𝑤𝑍 𝑦𝑤)
85 eluni2 4370 . . . . . . . 8 (𝑦 𝑍 ↔ ∃𝑤𝑍 𝑦𝑤)
8684, 85sylibr 222 . . . . . . 7 (𝑦𝐵𝑦 𝑍)
8786rgen 2905 . . . . . 6 𝑦𝐵 𝑦 𝑍
88 dfss3 3557 . . . . . 6 (𝐵 𝑍 ↔ ∀𝑦𝐵 𝑦 𝑍)
8987, 88mpbir 219 . . . . 5 𝐵 𝑍
9024, 89eqssi 3583 . . . 4 𝑍 = 𝐵
91 ovex 6554 . . . . . . . . . . . . . 14 (0[,]2) ∈ V
9250, 91eqeltri 2683 . . . . . . . . . . . . 13 𝐴 ∈ V
9392a1i 11 . . . . . . . . . . . 12 (⊤ → 𝐴 ∈ V)
9493, 65salexct 39011 . . . . . . . . . . 11 (⊤ → 𝑆 ∈ SAlg)
9594trud 1483 . . . . . . . . . 10 𝑆 ∈ SAlg
96 inss1 3794 . . . . . . . . . . 11 (𝑆𝑇) ⊆ 𝑆
9710, 96eqsstri 3597 . . . . . . . . . 10 𝐶𝑆
9895, 97pm3.2i 469 . . . . . . . . 9 (𝑆 ∈ SAlg ∧ 𝐶𝑆)
99 sseq2 3589 . . . . . . . . . 10 (𝑠 = 𝑆 → (𝐶𝑠𝐶𝑆))
10099elrab 3330 . . . . . . . . 9 (𝑆 ∈ {𝑠 ∈ SAlg ∣ 𝐶𝑠} ↔ (𝑆 ∈ SAlg ∧ 𝐶𝑆))
10198, 100mpbir 219 . . . . . . . 8 𝑆 ∈ {𝑠 ∈ SAlg ∣ 𝐶𝑠}
102 intss1 4421 . . . . . . . 8 (𝑆 ∈ {𝑠 ∈ SAlg ∣ 𝐶𝑠} → {𝑠 ∈ SAlg ∣ 𝐶𝑠} ⊆ 𝑆)
103101, 102ax-mp 5 . . . . . . 7 {𝑠 ∈ SAlg ∣ 𝐶𝑠} ⊆ 𝑆
1042, 103eqsstri 3597 . . . . . 6 𝑍𝑆
105104sseli 3563 . . . . 5 (𝐵𝑍𝐵𝑆)
10650, 65, 4salexct2 39016 . . . . . 6 ¬ 𝐵𝑆
107106a1i 11 . . . . 5 (𝐵𝑍 → ¬ 𝐵𝑆)
108105, 107pm2.65i 183 . . . 4 ¬ 𝐵𝑍
10990, 108eqneltri 38055 . . 3 ¬ 𝑍𝑍
110109a1i 11 . 2 (𝑍 ∈ SAlg → ¬ 𝑍𝑍)
1111, 110pm2.65i 183 1 ¬ 𝑍 ∈ SAlg
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wo 381  wa 382   = wceq 1474  wtru 1475  wcel 1976  wral 2895  wrex 2896  {crab 2899  Vcvv 3172  cdif 3536  cin 3538  wss 3539  𝒫 cpw 4107  {csn 4124   cuni 4366   cint 4404   class class class wbr 4577  (class class class)co 6526  ωcom 6934  cdom 7816  Fincfn 7818  cr 9791  0cc0 9792  1c1 9793  *cxr 9929  cle 9931  2c2 10919  [,]cicc 12007  SAlgcsalg 38987
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1712  ax-4 1727  ax-5 1826  ax-6 1874  ax-7 1921  ax-8 1978  ax-9 1985  ax-10 2005  ax-11 2020  ax-12 2033  ax-13 2233  ax-ext 2589  ax-rep 4693  ax-sep 4703  ax-nul 4711  ax-pow 4763  ax-pr 4827  ax-un 6824  ax-inf2 8398  ax-cc 9117  ax-cnex 9848  ax-resscn 9849  ax-1cn 9850  ax-icn 9851  ax-addcl 9852  ax-addrcl 9853  ax-mulcl 9854  ax-mulrcl 9855  ax-mulcom 9856  ax-addass 9857  ax-mulass 9858  ax-distr 9859  ax-i2m1 9860  ax-1ne0 9861  ax-1rid 9862  ax-rnegex 9863  ax-rrecex 9864  ax-cnre 9865  ax-pre-lttri 9866  ax-pre-lttrn 9867  ax-pre-ltadd 9868  ax-pre-mulgt0 9869  ax-pre-sup 9870
This theorem depends on definitions:  df-bi 195  df-or 383  df-an 384  df-3or 1031  df-3an 1032  df-tru 1477  df-fal 1480  df-ex 1695  df-nf 1700  df-sb 1867  df-eu 2461  df-mo 2462  df-clab 2596  df-cleq 2602  df-clel 2605  df-nfc 2739  df-ne 2781  df-nel 2782  df-ral 2900  df-rex 2901  df-reu 2902  df-rmo 2903  df-rab 2904  df-v 3174  df-sbc 3402  df-csb 3499  df-dif 3542  df-un 3544  df-in 3546  df-ss 3553  df-pss 3555  df-nul 3874  df-if 4036  df-pw 4109  df-sn 4125  df-pr 4127  df-tp 4129  df-op 4131  df-uni 4367  df-int 4405  df-iun 4451  df-br 4578  df-opab 4638  df-mpt 4639  df-tr 4675  df-eprel 4938  df-id 4942  df-po 4948  df-so 4949  df-fr 4986  df-se 4987  df-we 4988  df-xp 5033  df-rel 5034  df-cnv 5035  df-co 5036  df-dm 5037  df-rn 5038  df-res 5039  df-ima 5040  df-pred 5582  df-ord 5628  df-on 5629  df-lim 5630  df-suc 5631  df-iota 5753  df-fun 5791  df-fn 5792  df-f 5793  df-f1 5794  df-fo 5795  df-f1o 5796  df-fv 5797  df-isom 5798  df-riota 6488  df-ov 6529  df-oprab 6530  df-mpt2 6531  df-om 6935  df-1st 7036  df-2nd 7037  df-wrecs 7271  df-recs 7332  df-rdg 7370  df-1o 7424  df-2o 7425  df-oadd 7428  df-omul 7429  df-er 7606  df-map 7723  df-pm 7724  df-en 7819  df-dom 7820  df-sdom 7821  df-fin 7822  df-sup 8208  df-inf 8209  df-oi 8275  df-card 8625  df-acn 8628  df-pnf 9932  df-mnf 9933  df-xr 9934  df-ltxr 9935  df-le 9936  df-sub 10119  df-neg 10120  df-div 10536  df-nn 10870  df-2 10928  df-3 10929  df-n0 11142  df-z 11213  df-uz 11522  df-q 11623  df-rp 11667  df-xneg 11780  df-xadd 11781  df-xmul 11782  df-ioo 12008  df-ioc 12009  df-ico 12010  df-icc 12011  df-fz 12155  df-fzo 12292  df-fl 12412  df-seq 12621  df-exp 12680  df-hash 12937  df-cj 13635  df-re 13636  df-im 13637  df-sqrt 13771  df-abs 13772  df-limsup 13998  df-clim 14015  df-rlim 14016  df-sum 14213  df-topgen 15875  df-psmet 19507  df-xmet 19508  df-met 19509  df-bl 19510  df-mopn 19511  df-top 20468  df-bases 20469  df-topon 20470  df-ntr 20581  df-salg 38988
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator