Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  salgensscntex Structured version   Visualization version   GIF version

Theorem salgensscntex 42634
Description: This counterexample shows that the sigma-algebra generated by a set is not the smallest sigma-algebra containing the set, if we consider also sigma-algebras with a larger base set. (Contributed by Glauco Siliprandi, 3-Jan-2021.)
Hypotheses
Ref Expression
salgensscntex.a 𝐴 = (0[,]2)
salgensscntex.s 𝑆 = {𝑥 ∈ 𝒫 𝐴 ∣ (𝑥 ≼ ω ∨ (𝐴𝑥) ≼ ω)}
salgensscntex.x 𝑋 = ran (𝑦 ∈ (0[,]1) ↦ {𝑦})
salgensscntex.g 𝐺 = (SalGen‘𝑋)
Assertion
Ref Expression
salgensscntex (𝑋𝑆𝑆 ∈ SAlg ∧ ¬ 𝐺𝑆)
Distinct variable groups:   𝑥,𝐴   𝑥,𝑆,𝑦
Allowed substitution hints:   𝐴(𝑦)   𝐺(𝑥,𝑦)   𝑋(𝑥,𝑦)

Proof of Theorem salgensscntex
StepHypRef Expression
1 salgensscntex.x . . 3 𝑋 = ran (𝑦 ∈ (0[,]1) ↦ {𝑦})
2 0re 10646 . . . . . . . . . . . 12 0 ∈ ℝ
3 2re 11714 . . . . . . . . . . . 12 2 ∈ ℝ
42, 3pm3.2i 473 . . . . . . . . . . 11 (0 ∈ ℝ ∧ 2 ∈ ℝ)
52leidi 11177 . . . . . . . . . . . 12 0 ≤ 0
6 1le2 11849 . . . . . . . . . . . 12 1 ≤ 2
75, 6pm3.2i 473 . . . . . . . . . . 11 (0 ≤ 0 ∧ 1 ≤ 2)
8 iccss 12807 . . . . . . . . . . 11 (((0 ∈ ℝ ∧ 2 ∈ ℝ) ∧ (0 ≤ 0 ∧ 1 ≤ 2)) → (0[,]1) ⊆ (0[,]2))
94, 7, 8mp2an 690 . . . . . . . . . 10 (0[,]1) ⊆ (0[,]2)
10 id 22 . . . . . . . . . 10 (𝑦 ∈ (0[,]1) → 𝑦 ∈ (0[,]1))
119, 10sseldi 3968 . . . . . . . . 9 (𝑦 ∈ (0[,]1) → 𝑦 ∈ (0[,]2))
12 salgensscntex.a . . . . . . . . 9 𝐴 = (0[,]2)
1311, 12eleqtrrdi 2927 . . . . . . . 8 (𝑦 ∈ (0[,]1) → 𝑦𝐴)
14 snelpwi 5340 . . . . . . . 8 (𝑦𝐴 → {𝑦} ∈ 𝒫 𝐴)
1513, 14syl 17 . . . . . . 7 (𝑦 ∈ (0[,]1) → {𝑦} ∈ 𝒫 𝐴)
16 snfi 8597 . . . . . . . . . 10 {𝑦} ∈ Fin
17 fict 9119 . . . . . . . . . 10 ({𝑦} ∈ Fin → {𝑦} ≼ ω)
1816, 17ax-mp 5 . . . . . . . . 9 {𝑦} ≼ ω
19 orc 863 . . . . . . . . 9 ({𝑦} ≼ ω → ({𝑦} ≼ ω ∨ (𝐴 ∖ {𝑦}) ≼ ω))
2018, 19ax-mp 5 . . . . . . . 8 ({𝑦} ≼ ω ∨ (𝐴 ∖ {𝑦}) ≼ ω)
2120a1i 11 . . . . . . 7 (𝑦 ∈ (0[,]1) → ({𝑦} ≼ ω ∨ (𝐴 ∖ {𝑦}) ≼ ω))
2215, 21jca 514 . . . . . 6 (𝑦 ∈ (0[,]1) → ({𝑦} ∈ 𝒫 𝐴 ∧ ({𝑦} ≼ ω ∨ (𝐴 ∖ {𝑦}) ≼ ω)))
23 breq1 5072 . . . . . . . 8 (𝑥 = {𝑦} → (𝑥 ≼ ω ↔ {𝑦} ≼ ω))
24 difeq2 4096 . . . . . . . . 9 (𝑥 = {𝑦} → (𝐴𝑥) = (𝐴 ∖ {𝑦}))
2524breq1d 5079 . . . . . . . 8 (𝑥 = {𝑦} → ((𝐴𝑥) ≼ ω ↔ (𝐴 ∖ {𝑦}) ≼ ω))
2623, 25orbi12d 915 . . . . . . 7 (𝑥 = {𝑦} → ((𝑥 ≼ ω ∨ (𝐴𝑥) ≼ ω) ↔ ({𝑦} ≼ ω ∨ (𝐴 ∖ {𝑦}) ≼ ω)))
27 salgensscntex.s . . . . . . 7 𝑆 = {𝑥 ∈ 𝒫 𝐴 ∣ (𝑥 ≼ ω ∨ (𝐴𝑥) ≼ ω)}
2826, 27elrab2 3686 . . . . . 6 ({𝑦} ∈ 𝑆 ↔ ({𝑦} ∈ 𝒫 𝐴 ∧ ({𝑦} ≼ ω ∨ (𝐴 ∖ {𝑦}) ≼ ω)))
2922, 28sylibr 236 . . . . 5 (𝑦 ∈ (0[,]1) → {𝑦} ∈ 𝑆)
3029rgen 3151 . . . 4 𝑦 ∈ (0[,]1){𝑦} ∈ 𝑆
31 eqid 2824 . . . . 5 (𝑦 ∈ (0[,]1) ↦ {𝑦}) = (𝑦 ∈ (0[,]1) ↦ {𝑦})
3231rnmptss 6889 . . . 4 (∀𝑦 ∈ (0[,]1){𝑦} ∈ 𝑆 → ran (𝑦 ∈ (0[,]1) ↦ {𝑦}) ⊆ 𝑆)
3330, 32ax-mp 5 . . 3 ran (𝑦 ∈ (0[,]1) ↦ {𝑦}) ⊆ 𝑆
341, 33eqsstri 4004 . 2 𝑋𝑆
35 ovex 7192 . . . . . 6 (0[,]2) ∈ V
3612, 35eqeltri 2912 . . . . 5 𝐴 ∈ V
3736a1i 11 . . . 4 (⊤ → 𝐴 ∈ V)
3837, 27salexct 42624 . . 3 (⊤ → 𝑆 ∈ SAlg)
3938mptru 1543 . 2 𝑆 ∈ SAlg
40 ovex 7192 . . . . . . . . 9 (0[,]1) ∈ V
4140mptex 6989 . . . . . . . 8 (𝑦 ∈ (0[,]1) ↦ {𝑦}) ∈ V
4241rnex 7620 . . . . . . 7 ran (𝑦 ∈ (0[,]1) ↦ {𝑦}) ∈ V
431, 42eqeltri 2912 . . . . . 6 𝑋 ∈ V
4443a1i 11 . . . . 5 (⊤ → 𝑋 ∈ V)
45 salgensscntex.g . . . . 5 𝐺 = (SalGen‘𝑋)
461unieqi 4854 . . . . . 6 𝑋 = ran (𝑦 ∈ (0[,]1) ↦ {𝑦})
47 snex 5335 . . . . . . . . 9 {𝑦} ∈ V
4847rgenw 3153 . . . . . . . 8 𝑦 ∈ (0[,]1){𝑦} ∈ V
49 dfiun3g 5838 . . . . . . . 8 (∀𝑦 ∈ (0[,]1){𝑦} ∈ V → 𝑦 ∈ (0[,]1){𝑦} = ran (𝑦 ∈ (0[,]1) ↦ {𝑦}))
5048, 49ax-mp 5 . . . . . . 7 𝑦 ∈ (0[,]1){𝑦} = ran (𝑦 ∈ (0[,]1) ↦ {𝑦})
5150eqcomi 2833 . . . . . 6 ran (𝑦 ∈ (0[,]1) ↦ {𝑦}) = 𝑦 ∈ (0[,]1){𝑦}
52 iunid 4987 . . . . . 6 𝑦 ∈ (0[,]1){𝑦} = (0[,]1)
5346, 51, 523eqtrri 2852 . . . . 5 (0[,]1) = 𝑋
5444, 45, 53unisalgen 42630 . . . 4 (⊤ → (0[,]1) ∈ 𝐺)
5554mptru 1543 . . 3 (0[,]1) ∈ 𝐺
56 eqid 2824 . . . 4 (0[,]1) = (0[,]1)
5712, 27, 56salexct2 42629 . . 3 ¬ (0[,]1) ∈ 𝑆
58 nelss 4033 . . 3 (((0[,]1) ∈ 𝐺 ∧ ¬ (0[,]1) ∈ 𝑆) → ¬ 𝐺𝑆)
5955, 57, 58mp2an 690 . 2 ¬ 𝐺𝑆
6034, 39, 593pm3.2i 1335 1 (𝑋𝑆𝑆 ∈ SAlg ∧ ¬ 𝐺𝑆)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wa 398  wo 843  w3a 1083   = wceq 1536  wtru 1537  wcel 2113  wral 3141  {crab 3145  Vcvv 3497  cdif 3936  wss 3939  𝒫 cpw 4542  {csn 4570   cuni 4841   ciun 4922   class class class wbr 5069  cmpt 5149  ran crn 5559  cfv 6358  (class class class)co 7159  ωcom 7583  cdom 8510  Fincfn 8512  cr 10539  0cc0 10540  1c1 10541  cle 10679  2c2 11695  [,]cicc 12744  SAlgcsalg 42600  SalGencsalgen 42604
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1969  ax-7 2014  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2160  ax-12 2176  ax-ext 2796  ax-rep 5193  ax-sep 5206  ax-nul 5213  ax-pow 5269  ax-pr 5333  ax-un 7464  ax-inf2 9107  ax-cc 9860  ax-cnex 10596  ax-resscn 10597  ax-1cn 10598  ax-icn 10599  ax-addcl 10600  ax-addrcl 10601  ax-mulcl 10602  ax-mulrcl 10603  ax-mulcom 10604  ax-addass 10605  ax-mulass 10606  ax-distr 10607  ax-i2m1 10608  ax-1ne0 10609  ax-1rid 10610  ax-rnegex 10611  ax-rrecex 10612  ax-cnre 10613  ax-pre-lttri 10614  ax-pre-lttrn 10615  ax-pre-ltadd 10616  ax-pre-mulgt0 10617  ax-pre-sup 10618
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1539  df-fal 1549  df-ex 1780  df-nf 1784  df-sb 2069  df-mo 2621  df-eu 2653  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2966  df-ne 3020  df-nel 3127  df-ral 3146  df-rex 3147  df-reu 3148  df-rmo 3149  df-rab 3150  df-v 3499  df-sbc 3776  df-csb 3887  df-dif 3942  df-un 3944  df-in 3946  df-ss 3955  df-pss 3957  df-nul 4295  df-if 4471  df-pw 4544  df-sn 4571  df-pr 4573  df-tp 4575  df-op 4577  df-uni 4842  df-int 4880  df-iun 4924  df-br 5070  df-opab 5132  df-mpt 5150  df-tr 5176  df-id 5463  df-eprel 5468  df-po 5477  df-so 5478  df-fr 5517  df-se 5518  df-we 5519  df-xp 5564  df-rel 5565  df-cnv 5566  df-co 5567  df-dm 5568  df-rn 5569  df-res 5570  df-ima 5571  df-pred 6151  df-ord 6197  df-on 6198  df-lim 6199  df-suc 6200  df-iota 6317  df-fun 6360  df-fn 6361  df-f 6362  df-f1 6363  df-fo 6364  df-f1o 6365  df-fv 6366  df-isom 6367  df-riota 7117  df-ov 7162  df-oprab 7163  df-mpo 7164  df-om 7584  df-1st 7692  df-2nd 7693  df-wrecs 7950  df-recs 8011  df-rdg 8049  df-1o 8105  df-2o 8106  df-oadd 8109  df-omul 8110  df-er 8292  df-map 8411  df-pm 8412  df-en 8513  df-dom 8514  df-sdom 8515  df-fin 8516  df-sup 8909  df-inf 8910  df-oi 8977  df-card 9371  df-acn 9374  df-pnf 10680  df-mnf 10681  df-xr 10682  df-ltxr 10683  df-le 10684  df-sub 10875  df-neg 10876  df-div 11301  df-nn 11642  df-2 11703  df-3 11704  df-n0 11901  df-z 11985  df-uz 12247  df-q 12352  df-rp 12393  df-xneg 12510  df-xadd 12511  df-xmul 12512  df-ioo 12745  df-ioc 12746  df-ico 12747  df-icc 12748  df-fz 12896  df-fzo 13037  df-fl 13165  df-seq 13373  df-exp 13433  df-hash 13694  df-cj 14461  df-re 14462  df-im 14463  df-sqrt 14597  df-abs 14598  df-limsup 14831  df-clim 14848  df-rlim 14849  df-sum 15046  df-topgen 16720  df-psmet 20540  df-xmet 20541  df-met 20542  df-bl 20543  df-mopn 20544  df-top 21505  df-topon 21522  df-bases 21557  df-ntr 21631  df-salg 42601  df-salgen 42605
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator