Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  saliuncl Structured version   Visualization version   GIF version

Theorem saliuncl 39849
Description: SAlg sigma-algebra is closed under countable indexed union. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
Hypotheses
Ref Expression
saliuncl.s (𝜑𝑆 ∈ SAlg)
saliuncl.kct (𝜑𝐾 ≼ ω)
saliuncl.b ((𝜑𝑘𝐾) → 𝐸𝑆)
Assertion
Ref Expression
saliuncl (𝜑 𝑘𝐾 𝐸𝑆)
Distinct variable groups:   𝑘,𝐾   𝑆,𝑘   𝜑,𝑘
Allowed substitution hint:   𝐸(𝑘)

Proof of Theorem saliuncl
StepHypRef Expression
1 saliuncl.b . . . 4 ((𝜑𝑘𝐾) → 𝐸𝑆)
21ralrimiva 2960 . . 3 (𝜑 → ∀𝑘𝐾 𝐸𝑆)
3 dfiun3g 5338 . . 3 (∀𝑘𝐾 𝐸𝑆 𝑘𝐾 𝐸 = ran (𝑘𝐾𝐸))
42, 3syl 17 . 2 (𝜑 𝑘𝐾 𝐸 = ran (𝑘𝐾𝐸))
5 saliuncl.s . . 3 (𝜑𝑆 ∈ SAlg)
6 eqid 2621 . . . . . 6 (𝑘𝐾𝐸) = (𝑘𝐾𝐸)
76rnmptss 6347 . . . . 5 (∀𝑘𝐾 𝐸𝑆 → ran (𝑘𝐾𝐸) ⊆ 𝑆)
82, 7syl 17 . . . 4 (𝜑 → ran (𝑘𝐾𝐸) ⊆ 𝑆)
95, 8ssexd 4765 . . . . 5 (𝜑 → ran (𝑘𝐾𝐸) ∈ V)
10 elpwg 4138 . . . . 5 (ran (𝑘𝐾𝐸) ∈ V → (ran (𝑘𝐾𝐸) ∈ 𝒫 𝑆 ↔ ran (𝑘𝐾𝐸) ⊆ 𝑆))
119, 10syl 17 . . . 4 (𝜑 → (ran (𝑘𝐾𝐸) ∈ 𝒫 𝑆 ↔ ran (𝑘𝐾𝐸) ⊆ 𝑆))
128, 11mpbird 247 . . 3 (𝜑 → ran (𝑘𝐾𝐸) ∈ 𝒫 𝑆)
13 saliuncl.kct . . . 4 (𝜑𝐾 ≼ ω)
14 1stcrestlem 21165 . . . 4 (𝐾 ≼ ω → ran (𝑘𝐾𝐸) ≼ ω)
1513, 14syl 17 . . 3 (𝜑 → ran (𝑘𝐾𝐸) ≼ ω)
165, 12, 15salunicl 39843 . 2 (𝜑 ran (𝑘𝐾𝐸) ∈ 𝑆)
174, 16eqeltrd 2698 1 (𝜑 𝑘𝐾 𝐸𝑆)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384   = wceq 1480  wcel 1987  wral 2907  Vcvv 3186  wss 3555  𝒫 cpw 4130   cuni 4402   ciun 4485   class class class wbr 4613  cmpt 4673  ran crn 5075  ωcom 7012  cdom 7897  SAlgcsalg 39835
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4731  ax-sep 4741  ax-nul 4749  ax-pow 4803  ax-pr 4867  ax-un 6902
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-ral 2912  df-rex 2913  df-reu 2914  df-rmo 2915  df-rab 2916  df-v 3188  df-sbc 3418  df-csb 3515  df-dif 3558  df-un 3560  df-in 3562  df-ss 3569  df-pss 3571  df-nul 3892  df-if 4059  df-pw 4132  df-sn 4149  df-pr 4151  df-tp 4153  df-op 4155  df-uni 4403  df-int 4441  df-iun 4487  df-br 4614  df-opab 4674  df-mpt 4675  df-tr 4713  df-eprel 4985  df-id 4989  df-po 4995  df-so 4996  df-fr 5033  df-se 5034  df-we 5035  df-xp 5080  df-rel 5081  df-cnv 5082  df-co 5083  df-dm 5084  df-rn 5085  df-res 5086  df-ima 5087  df-pred 5639  df-ord 5685  df-on 5686  df-lim 5687  df-suc 5688  df-iota 5810  df-fun 5849  df-fn 5850  df-f 5851  df-f1 5852  df-fo 5853  df-f1o 5854  df-fv 5855  df-isom 5856  df-riota 6565  df-ov 6607  df-oprab 6608  df-mpt2 6609  df-om 7013  df-1st 7113  df-2nd 7114  df-wrecs 7352  df-recs 7413  df-er 7687  df-map 7804  df-en 7900  df-dom 7901  df-card 8709  df-acn 8712  df-salg 39836
This theorem is referenced by:  saliincl  39852  subsaliuncl  39883  meaiunlelem  39992  meaiuninclem  40004  meaiininclem  40007  caratheodory  40049  opnvonmbllem2  40154  ctvonmbl  40210  vonct  40214  smfaddlem2  40279  smflimlem1  40286  smfresal  40302  smfmullem4  40308
  Copyright terms: Public domain W3C validator