![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > saluni | Structured version Visualization version GIF version |
Description: A set is an element of any sigma-algebra on it . (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
Ref | Expression |
---|---|
saluni | ⊢ (𝑆 ∈ SAlg → ∪ 𝑆 ∈ 𝑆) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dif0 4091 | . 2 ⊢ (∪ 𝑆 ∖ ∅) = ∪ 𝑆 | |
2 | 0sal 41041 | . . 3 ⊢ (𝑆 ∈ SAlg → ∅ ∈ 𝑆) | |
3 | saldifcl 41040 | . . 3 ⊢ ((𝑆 ∈ SAlg ∧ ∅ ∈ 𝑆) → (∪ 𝑆 ∖ ∅) ∈ 𝑆) | |
4 | 2, 3 | mpdan 705 | . 2 ⊢ (𝑆 ∈ SAlg → (∪ 𝑆 ∖ ∅) ∈ 𝑆) |
5 | 1, 4 | syl5eqelr 2842 | 1 ⊢ (𝑆 ∈ SAlg → ∪ 𝑆 ∈ 𝑆) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2137 ∖ cdif 3710 ∅c0 4056 ∪ cuni 4586 SAlgcsalg 41029 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1869 ax-4 1884 ax-5 1986 ax-6 2052 ax-7 2088 ax-9 2146 ax-10 2166 ax-11 2181 ax-12 2194 ax-13 2389 ax-ext 2738 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1074 df-tru 1633 df-ex 1852 df-nf 1857 df-sb 2045 df-clab 2745 df-cleq 2751 df-clel 2754 df-nfc 2889 df-ral 3053 df-rex 3054 df-rab 3057 df-v 3340 df-dif 3716 df-in 3720 df-ss 3727 df-nul 4057 df-pw 4302 df-uni 4587 df-salg 41030 |
This theorem is referenced by: intsaluni 41048 unisalgen 41059 salgencntex 41062 salunid 41072 |
Copyright terms: Public domain | W3C validator |