Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  salunicl Structured version   Visualization version   GIF version

Theorem salunicl 42608
Description: SAlg sigma-algebra is closed under countable union. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
Hypotheses
Ref Expression
salunicl.s (𝜑𝑆 ∈ SAlg)
salunicl.t (𝜑𝑇 ∈ 𝒫 𝑆)
salunicl.tct (𝜑𝑇 ≼ ω)
Assertion
Ref Expression
salunicl (𝜑 𝑇𝑆)

Proof of Theorem salunicl
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 salunicl.tct . 2 (𝜑𝑇 ≼ ω)
2 breq1 5071 . . . 4 (𝑦 = 𝑇 → (𝑦 ≼ ω ↔ 𝑇 ≼ ω))
3 unieq 4851 . . . . 5 (𝑦 = 𝑇 𝑦 = 𝑇)
43eleq1d 2899 . . . 4 (𝑦 = 𝑇 → ( 𝑦𝑆 𝑇𝑆))
52, 4imbi12d 347 . . 3 (𝑦 = 𝑇 → ((𝑦 ≼ ω → 𝑦𝑆) ↔ (𝑇 ≼ ω → 𝑇𝑆)))
6 salunicl.s . . . . 5 (𝜑𝑆 ∈ SAlg)
7 issal 42606 . . . . . 6 (𝑆 ∈ SAlg → (𝑆 ∈ SAlg ↔ (∅ ∈ 𝑆 ∧ ∀𝑦𝑆 ( 𝑆𝑦) ∈ 𝑆 ∧ ∀𝑦 ∈ 𝒫 𝑆(𝑦 ≼ ω → 𝑦𝑆))))
86, 7syl 17 . . . . 5 (𝜑 → (𝑆 ∈ SAlg ↔ (∅ ∈ 𝑆 ∧ ∀𝑦𝑆 ( 𝑆𝑦) ∈ 𝑆 ∧ ∀𝑦 ∈ 𝒫 𝑆(𝑦 ≼ ω → 𝑦𝑆))))
96, 8mpbid 234 . . . 4 (𝜑 → (∅ ∈ 𝑆 ∧ ∀𝑦𝑆 ( 𝑆𝑦) ∈ 𝑆 ∧ ∀𝑦 ∈ 𝒫 𝑆(𝑦 ≼ ω → 𝑦𝑆)))
109simp3d 1140 . . 3 (𝜑 → ∀𝑦 ∈ 𝒫 𝑆(𝑦 ≼ ω → 𝑦𝑆))
11 salunicl.t . . 3 (𝜑𝑇 ∈ 𝒫 𝑆)
125, 10, 11rspcdva 3627 . 2 (𝜑 → (𝑇 ≼ ω → 𝑇𝑆))
131, 12mpd 15 1 (𝜑 𝑇𝑆)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  w3a 1083   = wceq 1537  wcel 2114  wral 3140  cdif 3935  c0 4293  𝒫 cpw 4541   cuni 4840   class class class wbr 5068  ωcom 7582  cdom 8509  SAlgcsalg 42600
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ral 3145  df-rab 3149  df-v 3498  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-op 4576  df-uni 4841  df-br 5069  df-salg 42601
This theorem is referenced by:  saliuncl  42614  intsal  42620  smfpimbor1lem1  43080
  Copyright terms: Public domain W3C validator