![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > sb3an | Structured version Visualization version GIF version |
Description: Conjunction inside and outside of a substitution are equivalent. (Contributed by NM, 14-Dec-2006.) |
Ref | Expression |
---|---|
sb3an | ⊢ ([𝑦 / 𝑥](𝜑 ∧ 𝜓 ∧ 𝜒) ↔ ([𝑦 / 𝑥]𝜑 ∧ [𝑦 / 𝑥]𝜓 ∧ [𝑦 / 𝑥]𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-3an 1074 | . . 3 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) ↔ ((𝜑 ∧ 𝜓) ∧ 𝜒)) | |
2 | 1 | sbbii 2053 | . 2 ⊢ ([𝑦 / 𝑥](𝜑 ∧ 𝜓 ∧ 𝜒) ↔ [𝑦 / 𝑥]((𝜑 ∧ 𝜓) ∧ 𝜒)) |
3 | sban 2536 | . 2 ⊢ ([𝑦 / 𝑥]((𝜑 ∧ 𝜓) ∧ 𝜒) ↔ ([𝑦 / 𝑥](𝜑 ∧ 𝜓) ∧ [𝑦 / 𝑥]𝜒)) | |
4 | sban 2536 | . . . 4 ⊢ ([𝑦 / 𝑥](𝜑 ∧ 𝜓) ↔ ([𝑦 / 𝑥]𝜑 ∧ [𝑦 / 𝑥]𝜓)) | |
5 | 4 | anbi1i 733 | . . 3 ⊢ (([𝑦 / 𝑥](𝜑 ∧ 𝜓) ∧ [𝑦 / 𝑥]𝜒) ↔ (([𝑦 / 𝑥]𝜑 ∧ [𝑦 / 𝑥]𝜓) ∧ [𝑦 / 𝑥]𝜒)) |
6 | df-3an 1074 | . . 3 ⊢ (([𝑦 / 𝑥]𝜑 ∧ [𝑦 / 𝑥]𝜓 ∧ [𝑦 / 𝑥]𝜒) ↔ (([𝑦 / 𝑥]𝜑 ∧ [𝑦 / 𝑥]𝜓) ∧ [𝑦 / 𝑥]𝜒)) | |
7 | 5, 6 | bitr4i 267 | . 2 ⊢ (([𝑦 / 𝑥](𝜑 ∧ 𝜓) ∧ [𝑦 / 𝑥]𝜒) ↔ ([𝑦 / 𝑥]𝜑 ∧ [𝑦 / 𝑥]𝜓 ∧ [𝑦 / 𝑥]𝜒)) |
8 | 2, 3, 7 | 3bitri 286 | 1 ⊢ ([𝑦 / 𝑥](𝜑 ∧ 𝜓 ∧ 𝜒) ↔ ([𝑦 / 𝑥]𝜑 ∧ [𝑦 / 𝑥]𝜓 ∧ [𝑦 / 𝑥]𝜒)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 196 ∧ wa 383 ∧ w3a 1072 [wsb 2046 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1988 ax-6 2054 ax-7 2090 ax-10 2168 ax-12 2196 ax-13 2391 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1074 df-ex 1854 df-nf 1859 df-sb 2047 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |