![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > sb4a | Structured version Visualization version GIF version |
Description: A version of sb4 2384 that doesn't require a distinctor antecedent. (Contributed by NM, 2-Feb-2007.) |
Ref | Expression |
---|---|
sb4a | ⊢ ([𝑦 / 𝑥]∀𝑦𝜑 → ∀𝑥(𝑥 = 𝑦 → 𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sb1 1940 | . 2 ⊢ ([𝑦 / 𝑥]∀𝑦𝜑 → ∃𝑥(𝑥 = 𝑦 ∧ ∀𝑦𝜑)) | |
2 | equs5a 2376 | . 2 ⊢ (∃𝑥(𝑥 = 𝑦 ∧ ∀𝑦𝜑) → ∀𝑥(𝑥 = 𝑦 → 𝜑)) | |
3 | 1, 2 | syl 17 | 1 ⊢ ([𝑦 / 𝑥]∀𝑦𝜑 → ∀𝑥(𝑥 = 𝑦 → 𝜑)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 ∀wal 1521 ∃wex 1744 [wsb 1937 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-10 2059 ax-12 2087 ax-13 2282 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-ex 1745 df-nf 1750 df-sb 1938 |
This theorem is referenced by: hbsb2a 2389 sb6f 2413 bj-hbsb2av 32885 |
Copyright terms: Public domain | W3C validator |