MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sb56 Structured version   Visualization version   GIF version

Theorem sb56 2277
Description: Two equivalent ways of expressing the proper substitution of 𝑦 for 𝑥 in 𝜑, when 𝑥 and 𝑦 are distinct, namely, alternate definitions sb5 2276 and sb6 2093. Theorem 6.2 of [Quine] p. 40. The proof does not involve df-sb 2070. The implication "to the left" is equs4 2438 and does not require any disjoint variable condition (but the version with a disjoint variable condition, equs4v 2006, requires fewer axioms). Theorem equs45f 2482 replaces the disjoint variable condition with a non-freeness hypothesis and equs5 2483 replaces it with a distinctor as antecedent. (Contributed by NM, 14-Apr-2008.) Revised to use equsexv 2269 in place of equsex 2440 in order to remove dependency on ax-13 2390. (Revised by BJ, 20-Dec-2020.)
Assertion
Ref Expression
sb56 (∃𝑥(𝑥 = 𝑦𝜑) ↔ ∀𝑥(𝑥 = 𝑦𝜑))
Distinct variable group:   𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)

Proof of Theorem sb56
StepHypRef Expression
1 sb5 2276 . 2 ([𝑦 / 𝑥]𝜑 ↔ ∃𝑥(𝑥 = 𝑦𝜑))
2 sb6 2093 . 2 ([𝑦 / 𝑥]𝜑 ↔ ∀𝑥(𝑥 = 𝑦𝜑))
31, 2bitr3i 279 1 (∃𝑥(𝑥 = 𝑦𝜑) ↔ ∀𝑥(𝑥 = 𝑦𝜑))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  wal 1535  wex 1780  [wsb 2069
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-10 2145  ax-12 2177
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-ex 1781  df-nf 1785  df-sb 2070
This theorem is referenced by:  sb5OLD  2281  dfsb7  2285  dfsb7OLD  2286  sb4vOLDOLD  2513  sb4vOLDALT  2584  sb5ALT2  2586  mopick  2710  alexeqg  3646  dfdif3  4093  pm13.196a  40753
  Copyright terms: Public domain W3C validator