 Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  sb56 Structured version   Visualization version   GIF version

Theorem sb56 2147
 Description: Two equivalent ways of expressing the proper substitution of 𝑦 for 𝑥 in 𝜑, when 𝑥 and 𝑦 are distinct. Theorem 6.2 of [Quine] p. 40. The proof does not involve df-sb 1878. The implication "to the left" is equs4 2289 and does not require any dv condition (but the version with a dv condition, equs4v 1927, requires fewer axioms). Theorem equs45f 2349 replaces the dv condition with a non-freeness hypothesis and equs5 2350 replaces it with a distinctor as antecedent. (Contributed by NM, 14-Apr-2008.) Revised to use equsexv 2106 in place of equsex 2292 in order to remove dependency on ax-13 2245. (Revised by BJ, 20-Dec-2020.)
Assertion
Ref Expression
sb56 (∃𝑥(𝑥 = 𝑦𝜑) ↔ ∀𝑥(𝑥 = 𝑦𝜑))
Distinct variable group:   𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)

Proof of Theorem sb56
StepHypRef Expression
1 nfa1 2025 . 2 𝑥𝑥(𝑥 = 𝑦𝜑)
2 ax12v2 2046 . . 3 (𝑥 = 𝑦 → (𝜑 → ∀𝑥(𝑥 = 𝑦𝜑)))
3 sp 2051 . . . 4 (∀𝑥(𝑥 = 𝑦𝜑) → (𝑥 = 𝑦𝜑))
43com12 32 . . 3 (𝑥 = 𝑦 → (∀𝑥(𝑥 = 𝑦𝜑) → 𝜑))
52, 4impbid 202 . 2 (𝑥 = 𝑦 → (𝜑 ↔ ∀𝑥(𝑥 = 𝑦𝜑)))
61, 5equsexv 2106 1 (∃𝑥(𝑥 = 𝑦𝜑) ↔ ∀𝑥(𝑥 = 𝑦𝜑))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 196   ∧ wa 384  ∀wal 1478  ∃wex 1701 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-10 2016  ax-12 2044 This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-ex 1702  df-nf 1707 This theorem is referenced by:  sb6  2428  sb5  2429  mopick  2534  alexeqg  3320  bj-sb3v  32452  bj-sb4v  32453  bj-sb6  32463  bj-sb5  32464  pm13.196a  38136
 Copyright terms: Public domain W3C validator