 Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  sb6 Structured version   Visualization version   GIF version

Theorem sb6 2428
 Description: Equivalence for substitution. Compare Theorem 6.2 of [Quine] p. 40. Also proved as Lemmas 16 and 17 of [Tarski] p. 70. The implication "to the left" is sb2 2351 and does not require any dv condition. Theorem sb6f 2384 replaces the dv condition with a non-freeness hypothesis. (Contributed by NM, 18-Aug-1993.) (Proof shortened by Wolf Lammen, 21-Sep-2018.)
Assertion
Ref Expression
sb6 ([𝑦 / 𝑥]𝜑 ↔ ∀𝑥(𝑥 = 𝑦𝜑))
Distinct variable group:   𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)

Proof of Theorem sb6
StepHypRef Expression
1 sb1 1880 . . 3 ([𝑦 / 𝑥]𝜑 → ∃𝑥(𝑥 = 𝑦𝜑))
2 sb56 2147 . . 3 (∃𝑥(𝑥 = 𝑦𝜑) ↔ ∀𝑥(𝑥 = 𝑦𝜑))
31, 2sylib 208 . 2 ([𝑦 / 𝑥]𝜑 → ∀𝑥(𝑥 = 𝑦𝜑))
4 sb2 2351 . 2 (∀𝑥(𝑥 = 𝑦𝜑) → [𝑦 / 𝑥]𝜑)
53, 4impbii 199 1 ([𝑦 / 𝑥]𝜑 ↔ ∀𝑥(𝑥 = 𝑦𝜑))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 196   ∧ wa 384  ∀wal 1478  ∃wex 1701  [wsb 1877 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-10 2016  ax-12 2044  ax-13 2245 This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-ex 1702  df-nf 1707  df-sb 1878 This theorem is referenced by:  sb5  2429  2sb6  2443  sb6a  2447  2eu6  2557
 Copyright terms: Public domain W3C validator