MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sb6f Structured version   Visualization version   GIF version

Theorem sb6f 2533
Description: Equivalence for substitution when 𝑦 is not free in 𝜑. The implication "to the left" is sb2 2500 and does not require the non-freeness hypothesis. Theorem sb6 2089 replaces the non-freeness hypothesis with a disjoint variable condition and uses less axioms. Usage of this theorem is discouraged because it depends on ax-13 2386. (Contributed by NM, 2-Jun-1993.) (Revised by Mario Carneiro, 4-Oct-2016.) (New usage is discouraged.)
Hypothesis
Ref Expression
sb6f.1 𝑦𝜑
Assertion
Ref Expression
sb6f ([𝑦 / 𝑥]𝜑 ↔ ∀𝑥(𝑥 = 𝑦𝜑))

Proof of Theorem sb6f
StepHypRef Expression
1 sb6f.1 . . . . 5 𝑦𝜑
21nf5ri 2191 . . . 4 (𝜑 → ∀𝑦𝜑)
32sbimi 2075 . . 3 ([𝑦 / 𝑥]𝜑 → [𝑦 / 𝑥]∀𝑦𝜑)
4 sb4a 2505 . . 3 ([𝑦 / 𝑥]∀𝑦𝜑 → ∀𝑥(𝑥 = 𝑦𝜑))
53, 4syl 17 . 2 ([𝑦 / 𝑥]𝜑 → ∀𝑥(𝑥 = 𝑦𝜑))
6 sb2 2500 . 2 (∀𝑥(𝑥 = 𝑦𝜑) → [𝑦 / 𝑥]𝜑)
75, 6impbii 211 1 ([𝑦 / 𝑥]𝜑 ↔ ∀𝑥(𝑥 = 𝑦𝜑))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wal 1531  wnf 1780  [wsb 2065
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-10 2141  ax-12 2173  ax-13 2386
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-ex 1777  df-nf 1781  df-sb 2066
This theorem is referenced by:  sb5f  2534  bj-sbievv  34167
  Copyright terms: Public domain W3C validator