MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sb8 Structured version   Visualization version   GIF version

Theorem sb8 2423
Description: Substitution of variable in universal quantifier. (Contributed by NM, 16-May-1993.) (Revised by Mario Carneiro, 6-Oct-2016.) (Proof shortened by Jim Kingdon, 15-Jan-2018.)
Hypothesis
Ref Expression
sb5rf.1 𝑦𝜑
Assertion
Ref Expression
sb8 (∀𝑥𝜑 ↔ ∀𝑦[𝑦 / 𝑥]𝜑)

Proof of Theorem sb8
StepHypRef Expression
1 sb5rf.1 . 2 𝑦𝜑
21nfs1 2364 . 2 𝑥[𝑦 / 𝑥]𝜑
3 sbequ12 2108 . 2 (𝑥 = 𝑦 → (𝜑 ↔ [𝑦 / 𝑥]𝜑))
41, 2, 3cbval 2270 1 (∀𝑥𝜑 ↔ ∀𝑦[𝑦 / 𝑥]𝜑)
Colors of variables: wff setvar class
Syntax hints:  wb 196  wal 1478  wnf 1705  [wsb 1877
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-ex 1702  df-nf 1707  df-sb 1878
This theorem is referenced by:  sbhb  2437  sbnf2  2438  sb8eu  2502  abv  3192  sb8iota  5817  mo5f  29170  ax11-pm2  32463  bj-nfcf  32564  wl-sb8eut  32988  sbcalf  33546
  Copyright terms: Public domain W3C validator