Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  sb8e Structured version   Visualization version   GIF version

Theorem sb8e 2424
 Description: Substitution of variable in existential quantifier. (Contributed by NM, 12-Aug-1993.) (Revised by Mario Carneiro, 6-Oct-2016.) (Proof shortened by Jim Kingdon, 15-Jan-2018.)
Hypothesis
Ref Expression
sb5rf.1 𝑦𝜑
Assertion
Ref Expression
sb8e (∃𝑥𝜑 ↔ ∃𝑦[𝑦 / 𝑥]𝜑)

Proof of Theorem sb8e
StepHypRef Expression
1 sb5rf.1 . 2 𝑦𝜑
21nfs1 2364 . 2 𝑥[𝑦 / 𝑥]𝜑
3 sbequ12 2108 . 2 (𝑥 = 𝑦 → (𝜑 ↔ [𝑦 / 𝑥]𝜑))
41, 2, 3cbvex 2271 1 (∃𝑥𝜑 ↔ ∃𝑦[𝑦 / 𝑥]𝜑)
 Colors of variables: wff setvar class Syntax hints:   ↔ wb 196  ∃wex 1701  Ⅎwnf 1705  [wsb 1877 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245 This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-ex 1702  df-nf 1707  df-sb 1878 This theorem is referenced by:  sbnf2  2438  2sb8e  2466  sb8mo  2503  mo3  2506  bnj985  30731  bj-mo3OLD  32477  sbcexf  33550  exlimddvfi  33559  pm11.58  38072
 Copyright terms: Public domain W3C validator