MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sbab Structured version   Visualization version   GIF version

Theorem sbab 2732
Description: The right-hand side of the second equality is a way of representing proper substitution of 𝑦 for 𝑥 into a class variable. (Contributed by NM, 14-Sep-2003.)
Assertion
Ref Expression
sbab (𝑥 = 𝑦𝐴 = {𝑧 ∣ [𝑦 / 𝑥]𝑧𝐴})
Distinct variable groups:   𝑧,𝐴   𝑥,𝑧   𝑦,𝑧
Allowed substitution hints:   𝐴(𝑥,𝑦)

Proof of Theorem sbab
StepHypRef Expression
1 sbequ12 2094 . 2 (𝑥 = 𝑦 → (𝑧𝐴 ↔ [𝑦 / 𝑥]𝑧𝐴))
21abbi2dv 2724 1 (𝑥 = 𝑦𝐴 = {𝑧 ∣ [𝑦 / 𝑥]𝑧𝐴})
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1474  [wsb 1865  wcel 1975  {cab 2591
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1711  ax-4 1726  ax-5 1825  ax-6 1873  ax-7 1920  ax-10 2004  ax-11 2019  ax-12 2031  ax-13 2228  ax-ext 2585
This theorem depends on definitions:  df-bi 195  df-or 383  df-an 384  df-tru 1477  df-ex 1695  df-nf 1700  df-sb 1866  df-clab 2592  df-cleq 2598  df-clel 2601
This theorem is referenced by:  sbcel12  3930  sbceqg  3931  sbcel12gOLD  37574
  Copyright terms: Public domain W3C validator