MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sbbi Structured version   Visualization version   GIF version

Theorem sbbi 2429
Description: Equivalence inside and outside of a substitution are equivalent. (Contributed by NM, 14-May-1993.)
Assertion
Ref Expression
sbbi ([𝑦 / 𝑥](𝜑𝜓) ↔ ([𝑦 / 𝑥]𝜑 ↔ [𝑦 / 𝑥]𝜓))

Proof of Theorem sbbi
StepHypRef Expression
1 dfbi2 661 . . 3 ((𝜑𝜓) ↔ ((𝜑𝜓) ∧ (𝜓𝜑)))
21sbbii 1944 . 2 ([𝑦 / 𝑥](𝜑𝜓) ↔ [𝑦 / 𝑥]((𝜑𝜓) ∧ (𝜓𝜑)))
3 sbim 2423 . . . 4 ([𝑦 / 𝑥](𝜑𝜓) ↔ ([𝑦 / 𝑥]𝜑 → [𝑦 / 𝑥]𝜓))
4 sbim 2423 . . . 4 ([𝑦 / 𝑥](𝜓𝜑) ↔ ([𝑦 / 𝑥]𝜓 → [𝑦 / 𝑥]𝜑))
53, 4anbi12i 733 . . 3 (([𝑦 / 𝑥](𝜑𝜓) ∧ [𝑦 / 𝑥](𝜓𝜑)) ↔ (([𝑦 / 𝑥]𝜑 → [𝑦 / 𝑥]𝜓) ∧ ([𝑦 / 𝑥]𝜓 → [𝑦 / 𝑥]𝜑)))
6 sban 2427 . . 3 ([𝑦 / 𝑥]((𝜑𝜓) ∧ (𝜓𝜑)) ↔ ([𝑦 / 𝑥](𝜑𝜓) ∧ [𝑦 / 𝑥](𝜓𝜑)))
7 dfbi2 661 . . 3 (([𝑦 / 𝑥]𝜑 ↔ [𝑦 / 𝑥]𝜓) ↔ (([𝑦 / 𝑥]𝜑 → [𝑦 / 𝑥]𝜓) ∧ ([𝑦 / 𝑥]𝜓 → [𝑦 / 𝑥]𝜑)))
85, 6, 73bitr4i 292 . 2 ([𝑦 / 𝑥]((𝜑𝜓) ∧ (𝜓𝜑)) ↔ ([𝑦 / 𝑥]𝜑 ↔ [𝑦 / 𝑥]𝜓))
92, 8bitri 264 1 ([𝑦 / 𝑥](𝜑𝜓) ↔ ([𝑦 / 𝑥]𝜑 ↔ [𝑦 / 𝑥]𝜓))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 383  [wsb 1937
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-10 2059  ax-12 2087  ax-13 2282
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-ex 1745  df-nf 1750  df-sb 1938
This theorem is referenced by:  spsbbi  2430  sblbis  2432  sbrbis  2433  pm13.183  3376  sbcbig  3513  sb8iota  5896  bj-sbidmOLD  32956
  Copyright terms: Public domain W3C validator