Users' Mathboxes Mathbox for Giovanni Mascellani < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sbcalfi Structured version   Visualization version   GIF version

Theorem sbcalfi 32885
Description: Move universal quantifier in and out of class substitution, with an explicit non-free variable condition and in inference form. (Contributed by Giovanni Mascellani, 30-May-2019.)
Hypotheses
Ref Expression
sbcalfi.1 𝑦𝐴
sbcalfi.2 ([𝐴 / 𝑥]𝜑𝜓)
Assertion
Ref Expression
sbcalfi ([𝐴 / 𝑥]𝑦𝜑 ↔ ∀𝑦𝜓)
Distinct variable group:   𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝜓(𝑥,𝑦)   𝐴(𝑥,𝑦)

Proof of Theorem sbcalfi
StepHypRef Expression
1 sbcalfi.1 . . 3 𝑦𝐴
21sbcalf 32883 . 2 ([𝐴 / 𝑥]𝑦𝜑 ↔ ∀𝑦[𝐴 / 𝑥]𝜑)
3 sbcalfi.2 . . 3 ([𝐴 / 𝑥]𝜑𝜓)
43albii 1736 . 2 (∀𝑦[𝐴 / 𝑥]𝜑 ↔ ∀𝑦𝜓)
52, 4bitri 262 1 ([𝐴 / 𝑥]𝑦𝜑 ↔ ∀𝑦𝜓)
Colors of variables: wff setvar class
Syntax hints:  wb 194  wal 1472  wnfc 2737  [wsbc 3401
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1712  ax-4 1727  ax-5 1826  ax-6 1874  ax-7 1921  ax-10 2005  ax-11 2020  ax-12 2033  ax-13 2233  ax-ext 2589
This theorem depends on definitions:  df-bi 195  df-or 383  df-an 384  df-tru 1477  df-ex 1695  df-nf 1700  df-sb 1867  df-clab 2596  df-cleq 2602  df-clel 2605  df-nfc 2739  df-v 3174  df-sbc 3402
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator