Users' Mathboxes Mathbox for Giovanni Mascellani < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sbccom2f Structured version   Visualization version   GIF version

Theorem sbccom2f 34061
Description: Commutative law for double class substitution, with non free variable condition. (Contributed by Giovanni Mascellani, 31-May-2019.)
Hypotheses
Ref Expression
sbccom2f.1 𝐴 ∈ V
sbccom2f.2 𝑦𝐴
Assertion
Ref Expression
sbccom2f ([𝐴 / 𝑥][𝐵 / 𝑦]𝜑[𝐴 / 𝑥𝐵 / 𝑦][𝐴 / 𝑥]𝜑)
Distinct variable group:   𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝐴(𝑥,𝑦)   𝐵(𝑥,𝑦)

Proof of Theorem sbccom2f
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 sbcco 3491 . . . 4 ([𝐵 / 𝑧][𝑧 / 𝑦]𝜑[𝐵 / 𝑦]𝜑)
21bicomi 214 . . 3 ([𝐵 / 𝑦]𝜑[𝐵 / 𝑧][𝑧 / 𝑦]𝜑)
32sbcbii 3524 . 2 ([𝐴 / 𝑥][𝐵 / 𝑦]𝜑[𝐴 / 𝑥][𝐵 / 𝑧][𝑧 / 𝑦]𝜑)
4 sbccom2f.1 . . 3 𝐴 ∈ V
54sbccom2 34060 . 2 ([𝐴 / 𝑥][𝐵 / 𝑧][𝑧 / 𝑦]𝜑[𝐴 / 𝑥𝐵 / 𝑧][𝐴 / 𝑥][𝑧 / 𝑦]𝜑)
6 vex 3234 . . . . . . 7 𝑧 ∈ V
76sbccom2 34060 . . . . . 6 ([𝑧 / 𝑦][𝐴 / 𝑥]𝜑[𝑧 / 𝑦𝐴 / 𝑥][𝑧 / 𝑦]𝜑)
8 sbccom2f.2 . . . . . . . 8 𝑦𝐴
9 eqidd 2652 . . . . . . . 8 (𝑦 = 𝑧𝐴 = 𝐴)
106, 8, 9csbief 3591 . . . . . . 7 𝑧 / 𝑦𝐴 = 𝐴
11 dfsbcq 3470 . . . . . . 7 (𝑧 / 𝑦𝐴 = 𝐴 → ([𝑧 / 𝑦𝐴 / 𝑥][𝑧 / 𝑦]𝜑[𝐴 / 𝑥][𝑧 / 𝑦]𝜑))
1210, 11ax-mp 5 . . . . . 6 ([𝑧 / 𝑦𝐴 / 𝑥][𝑧 / 𝑦]𝜑[𝐴 / 𝑥][𝑧 / 𝑦]𝜑)
137, 12bitri 264 . . . . 5 ([𝑧 / 𝑦][𝐴 / 𝑥]𝜑[𝐴 / 𝑥][𝑧 / 𝑦]𝜑)
1413bicomi 214 . . . 4 ([𝐴 / 𝑥][𝑧 / 𝑦]𝜑[𝑧 / 𝑦][𝐴 / 𝑥]𝜑)
1514sbcbii 3524 . . 3 ([𝐴 / 𝑥𝐵 / 𝑧][𝐴 / 𝑥][𝑧 / 𝑦]𝜑[𝐴 / 𝑥𝐵 / 𝑧][𝑧 / 𝑦][𝐴 / 𝑥]𝜑)
16 sbcco 3491 . . 3 ([𝐴 / 𝑥𝐵 / 𝑧][𝑧 / 𝑦][𝐴 / 𝑥]𝜑[𝐴 / 𝑥𝐵 / 𝑦][𝐴 / 𝑥]𝜑)
1715, 16bitri 264 . 2 ([𝐴 / 𝑥𝐵 / 𝑧][𝐴 / 𝑥][𝑧 / 𝑦]𝜑[𝐴 / 𝑥𝐵 / 𝑦][𝐴 / 𝑥]𝜑)
183, 5, 173bitri 286 1 ([𝐴 / 𝑥][𝐵 / 𝑦]𝜑[𝐴 / 𝑥𝐵 / 𝑦][𝐴 / 𝑥]𝜑)
Colors of variables: wff setvar class
Syntax hints:  wb 196   = wceq 1523  wcel 2030  wnfc 2780  Vcvv 3231  [wsbc 3468  csb 3566
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-v 3233  df-sbc 3469  df-csb 3567
This theorem is referenced by:  sbccom2fi  34062
  Copyright terms: Public domain W3C validator