MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sbcel12 Structured version   Visualization version   GIF version

Theorem sbcel12 3960
Description: Distribute proper substitution through a membership relation. (Contributed by NM, 10-Nov-2005.) (Revised by NM, 18-Aug-2018.)
Assertion
Ref Expression
sbcel12 ([𝐴 / 𝑥]𝐵𝐶𝐴 / 𝑥𝐵𝐴 / 𝑥𝐶)

Proof of Theorem sbcel12
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dfsbcq2 3424 . . . 4 (𝑧 = 𝐴 → ([𝑧 / 𝑥]𝐵𝐶[𝐴 / 𝑥]𝐵𝐶))
2 dfsbcq2 3424 . . . . . 6 (𝑧 = 𝐴 → ([𝑧 / 𝑥]𝑦𝐵[𝐴 / 𝑥]𝑦𝐵))
32abbidv 2738 . . . . 5 (𝑧 = 𝐴 → {𝑦 ∣ [𝑧 / 𝑥]𝑦𝐵} = {𝑦[𝐴 / 𝑥]𝑦𝐵})
4 dfsbcq2 3424 . . . . . 6 (𝑧 = 𝐴 → ([𝑧 / 𝑥]𝑦𝐶[𝐴 / 𝑥]𝑦𝐶))
54abbidv 2738 . . . . 5 (𝑧 = 𝐴 → {𝑦 ∣ [𝑧 / 𝑥]𝑦𝐶} = {𝑦[𝐴 / 𝑥]𝑦𝐶})
63, 5eleq12d 2692 . . . 4 (𝑧 = 𝐴 → ({𝑦 ∣ [𝑧 / 𝑥]𝑦𝐵} ∈ {𝑦 ∣ [𝑧 / 𝑥]𝑦𝐶} ↔ {𝑦[𝐴 / 𝑥]𝑦𝐵} ∈ {𝑦[𝐴 / 𝑥]𝑦𝐶}))
7 nfs1v 2436 . . . . . . 7 𝑥[𝑧 / 𝑥]𝑦𝐵
87nfab 2765 . . . . . 6 𝑥{𝑦 ∣ [𝑧 / 𝑥]𝑦𝐵}
9 nfs1v 2436 . . . . . . 7 𝑥[𝑧 / 𝑥]𝑦𝐶
109nfab 2765 . . . . . 6 𝑥{𝑦 ∣ [𝑧 / 𝑥]𝑦𝐶}
118, 10nfel 2773 . . . . 5 𝑥{𝑦 ∣ [𝑧 / 𝑥]𝑦𝐵} ∈ {𝑦 ∣ [𝑧 / 𝑥]𝑦𝐶}
12 sbab 2747 . . . . . 6 (𝑥 = 𝑧𝐵 = {𝑦 ∣ [𝑧 / 𝑥]𝑦𝐵})
13 sbab 2747 . . . . . 6 (𝑥 = 𝑧𝐶 = {𝑦 ∣ [𝑧 / 𝑥]𝑦𝐶})
1412, 13eleq12d 2692 . . . . 5 (𝑥 = 𝑧 → (𝐵𝐶 ↔ {𝑦 ∣ [𝑧 / 𝑥]𝑦𝐵} ∈ {𝑦 ∣ [𝑧 / 𝑥]𝑦𝐶}))
1511, 14sbie 2407 . . . 4 ([𝑧 / 𝑥]𝐵𝐶 ↔ {𝑦 ∣ [𝑧 / 𝑥]𝑦𝐵} ∈ {𝑦 ∣ [𝑧 / 𝑥]𝑦𝐶})
161, 6, 15vtoclbg 3256 . . 3 (𝐴 ∈ V → ([𝐴 / 𝑥]𝐵𝐶 ↔ {𝑦[𝐴 / 𝑥]𝑦𝐵} ∈ {𝑦[𝐴 / 𝑥]𝑦𝐶}))
17 df-csb 3519 . . . 4 𝐴 / 𝑥𝐵 = {𝑦[𝐴 / 𝑥]𝑦𝐵}
18 df-csb 3519 . . . 4 𝐴 / 𝑥𝐶 = {𝑦[𝐴 / 𝑥]𝑦𝐶}
1917, 18eleq12i 2691 . . 3 (𝐴 / 𝑥𝐵𝐴 / 𝑥𝐶 ↔ {𝑦[𝐴 / 𝑥]𝑦𝐵} ∈ {𝑦[𝐴 / 𝑥]𝑦𝐶})
2016, 19syl6bbr 278 . 2 (𝐴 ∈ V → ([𝐴 / 𝑥]𝐵𝐶𝐴 / 𝑥𝐵𝐴 / 𝑥𝐶))
21 sbcex 3431 . . . 4 ([𝐴 / 𝑥]𝐵𝐶𝐴 ∈ V)
2221con3i 150 . . 3 𝐴 ∈ V → ¬ [𝐴 / 𝑥]𝐵𝐶)
23 noel 3900 . . . 4 ¬ 𝐴 / 𝑥𝐵 ∈ ∅
24 csbprc 3957 . . . . 5 𝐴 ∈ V → 𝐴 / 𝑥𝐶 = ∅)
2524eleq2d 2684 . . . 4 𝐴 ∈ V → (𝐴 / 𝑥𝐵𝐴 / 𝑥𝐶𝐴 / 𝑥𝐵 ∈ ∅))
2623, 25mtbiri 317 . . 3 𝐴 ∈ V → ¬ 𝐴 / 𝑥𝐵𝐴 / 𝑥𝐶)
2722, 262falsed 366 . 2 𝐴 ∈ V → ([𝐴 / 𝑥]𝐵𝐶𝐴 / 𝑥𝐵𝐴 / 𝑥𝐶))
2820, 27pm2.61i 176 1 ([𝐴 / 𝑥]𝐵𝐶𝐴 / 𝑥𝐵𝐴 / 𝑥𝐶)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 196   = wceq 1480  [wsb 1877  wcel 1987  {cab 2607  Vcvv 3189  [wsbc 3421  csb 3518  c0 3896
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-tru 1483  df-fal 1486  df-ex 1702  df-nf 1707  df-sb 1878  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-v 3191  df-sbc 3422  df-csb 3519  df-dif 3562  df-nul 3897
This theorem is referenced by:  sbcnel12g  3962  sbcel1g  3964  sbcel2  3966  sbccsb2  3982  csbmpt12  4975  ixpsnval  7863  fmptdF  29321  csbmpt22g  32844  csbfinxpg  32892  finixpnum  33061
  Copyright terms: Public domain W3C validator