Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  sbceq1dd Structured version   Visualization version   GIF version

Theorem sbceq1dd 3474
 Description: Equality theorem for class substitution. (Contributed by Mario Carneiro, 9-Feb-2017.) (Revised by NM, 30-Jun-2018.)
Hypotheses
Ref Expression
sbceq1d.1 (𝜑𝐴 = 𝐵)
sbceq1dd.2 (𝜑[𝐴 / 𝑥]𝜓)
Assertion
Ref Expression
sbceq1dd (𝜑[𝐵 / 𝑥]𝜓)

Proof of Theorem sbceq1dd
StepHypRef Expression
1 sbceq1dd.2 . 2 (𝜑[𝐴 / 𝑥]𝜓)
2 sbceq1d.1 . . 3 (𝜑𝐴 = 𝐵)
32sbceq1d 3473 . 2 (𝜑 → ([𝐴 / 𝑥]𝜓[𝐵 / 𝑥]𝜓))
41, 3mpbid 222 1 (𝜑[𝐵 / 𝑥]𝜓)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   = wceq 1523  [wsbc 3468 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-9 2039  ax-ext 2631 This theorem depends on definitions:  df-bi 197  df-an 385  df-ex 1745  df-cleq 2644  df-clel 2647  df-sbc 3469 This theorem is referenced by:  prmind2  15445  sdclem2  33668  sbceq1ddi  34058
 Copyright terms: Public domain W3C validator