Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  sbceq2g Structured version   Visualization version   GIF version

Theorem sbceq2g 3964
 Description: Move proper substitution to second argument of an equality. (Contributed by NM, 30-Nov-2005.)
Assertion
Ref Expression
sbceq2g (𝐴𝑉 → ([𝐴 / 𝑥]𝐵 = 𝐶𝐵 = 𝐴 / 𝑥𝐶))
Distinct variable group:   𝑥,𝐵
Allowed substitution hints:   𝐴(𝑥)   𝐶(𝑥)   𝑉(𝑥)

Proof of Theorem sbceq2g
StepHypRef Expression
1 sbceqg 3958 . 2 (𝐴𝑉 → ([𝐴 / 𝑥]𝐵 = 𝐶𝐴 / 𝑥𝐵 = 𝐴 / 𝑥𝐶))
2 csbconstg 3528 . . 3 (𝐴𝑉𝐴 / 𝑥𝐵 = 𝐵)
32eqeq1d 2623 . 2 (𝐴𝑉 → (𝐴 / 𝑥𝐵 = 𝐴 / 𝑥𝐶𝐵 = 𝐴 / 𝑥𝐶))
41, 3bitrd 268 1 (𝐴𝑉 → ([𝐴 / 𝑥]𝐵 = 𝐶𝐵 = 𝐴 / 𝑥𝐶))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 196   = wceq 1480   ∈ wcel 1987  [wsbc 3418  ⦋csb 3515 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601 This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-v 3188  df-sbc 3419  df-csb 3516 This theorem is referenced by:  csbsng  4216  csbmpt12  4972  f1od2  29354  bj-snsetex  32619  csbmpt22g  32830  csbfinxpg  32878  poimirlem26  33088  cdlemkid3N  35722  cdlemkid4  35723  brtrclfv2  37521  frege116  37776
 Copyright terms: Public domain W3C validator