Mathbox for Thierry Arnoux < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sbceqbidf Structured version   Visualization version   GIF version

Theorem sbceqbidf 29161
 Description: Equality theorem for class substitution. (Contributed by Thierry Arnoux, 4-Sep-2018.)
Hypotheses
Ref Expression
sbceqbidf.1 𝑥𝜑
sbceqbidf.2 (𝜑𝐴 = 𝐵)
sbceqbidf.3 (𝜑 → (𝜓𝜒))
Assertion
Ref Expression
sbceqbidf (𝜑 → ([𝐴 / 𝑥]𝜓[𝐵 / 𝑥]𝜒))

Proof of Theorem sbceqbidf
StepHypRef Expression
1 sbceqbidf.2 . . 3 (𝜑𝐴 = 𝐵)
2 sbceqbidf.1 . . . 4 𝑥𝜑
3 sbceqbidf.3 . . . 4 (𝜑 → (𝜓𝜒))
42, 3abbid 2743 . . 3 (𝜑 → {𝑥𝜓} = {𝑥𝜒})
51, 4eleq12d 2698 . 2 (𝜑 → (𝐴 ∈ {𝑥𝜓} ↔ 𝐵 ∈ {𝑥𝜒}))
6 df-sbc 3423 . 2 ([𝐴 / 𝑥]𝜓𝐴 ∈ {𝑥𝜓})
7 df-sbc 3423 . 2 ([𝐵 / 𝑥]𝜒𝐵 ∈ {𝑥𝜒})
85, 6, 73bitr4g 303 1 (𝜑 → ([𝐴 / 𝑥]𝜓[𝐵 / 𝑥]𝜒))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 196   = wceq 1480  Ⅎwnf 1705   ∈ wcel 1992  {cab 2612  [wsbc 3422 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1841  ax-6 1890  ax-7 1937  ax-9 2001  ax-10 2021  ax-11 2036  ax-12 2049  ax-13 2250  ax-ext 2606 This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1883  df-clab 2613  df-cleq 2619  df-clel 2622  df-sbc 3423 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator