Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  sbcgf Structured version   Visualization version   GIF version

Theorem sbcgf 3483
 Description: Substitution for a variable not free in a wff does not affect it. (Contributed by NM, 11-Oct-2004.) (Proof shortened by Andrew Salmon, 29-Jun-2011.)
Hypothesis
Ref Expression
sbcgf.1 𝑥𝜑
Assertion
Ref Expression
sbcgf (𝐴𝑉 → ([𝐴 / 𝑥]𝜑𝜑))

Proof of Theorem sbcgf
StepHypRef Expression
1 sbcgf.1 . 2 𝑥𝜑
2 sbctt 3482 . 2 ((𝐴𝑉 ∧ Ⅎ𝑥𝜑) → ([𝐴 / 𝑥]𝜑𝜑))
31, 2mpan2 706 1 (𝐴𝑉 → ([𝐴 / 𝑥]𝜑𝜑))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 196  Ⅎwnf 1705   ∈ wcel 1987  [wsbc 3417 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-9 1996  ax-12 2044  ax-13 2245  ax-ext 2601 This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-clab 2608  df-cleq 2614  df-clel 2617  df-v 3188  df-sbc 3418 This theorem is referenced by:  sbc19.21g  3484  sbcg  3485  sbcabel  3498  bnj110  30636  bnj1039  30747  sbali  33547  sbexi  33548  sbcgfi  33565
 Copyright terms: Public domain W3C validator